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X-ray Computed Tomography

e Goal: reconstruct u(x,y,z E) from sinogram measurements {Y;}, where

/I exp{ /p(xy,zE)dl}dE, I=1,...,N

e Filtered Back Projection

o Fast and deterministic

) o FBP ignores statistics of the data
o Properties well understood

o Metallic implants cause streak artifacts.
o Not ideal for cone-beam and helical scanning

e Statistical Reconstruction

Based on a statistical model for the data

Non-standard geometries: cone-beam o Lower noise

Accurate physics model: beam hardening o Object constraints

Tradeoffs: computation time, software and o System model (detector response)
model complexities
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Poly-energetic Transmission CT

e X-ray beam has a broad spectrum and p(x,y,z E) is energy dependent.
Lower energies are preferentially attenuated.

e Log-processed sinograms are non linear with tissue thickness:
o Attenuation coefficient reduction
o Cupping
o Spill over
o Dark streaks
e Beam Hardening Correction Methods
o Mono-energetic beam gives low SNR.
o Dual energy requires 2 scans.

o Soft tissue pre-processing. Does not compensate for high Z materials.

o Post-processing for soft tissue and bone (Joseph and Spittal, 1978)
o Accuracy

o Mixed pixels
o Statistical!



Poly-energetic Transmission CT Model

e Object model
o Attenuation map consists of K non-overlapping tissues

K

U(X, Y, E) = kz M(E)r (%, y)p(x,y)
=

o {m(E)}L_; are known mass attenuation coefficients
o r¥(x,y) = 1if (x,y) € tissue k and r¥(x,y) = 0 otherwise (known)

o {pX(x,y)} are unkown tissue densities



° Deflnltlons

o S(p) (x,y)r¥(x,y)dl (tissue component thickness)

o p= [plv'"?pp]
— ($17SZ77S|K>

e Mean of photon flux along path L

_ /Ii(E)exp<
= /I ) expx

2 Yi(v(p))




Penalized Maximum Likelihood Estimation

e Objective function has three components
o Log-likelihood (data-fit term)

N _

L(p) = {Yilog Y (v (p)) + il = [Yi(vi(p)) +1i]}

=1
o Regularization term
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o Constraints (nonnegativity)



Iterative Reconstruction Algorithm

®(p) =L(p) —B-R(p)
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e Optimization Transfer Principle (De Pierro 93, 95)
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Poly-energetic Quadratic Cost Function and Algorithm

e Negative log likelihood
N —

~L(p) = _Z{—\ﬁlog[ﬁ(\_ﬁ(p))ﬂi]+(Yi(\_/i(p))+ri)}

N
= -Zlhi )

o Expand the ray log likelihood h;(v;) in a second-order Taylor series around
some estimate V;:

hi(v;) = hi(%) 4+ 0Ohi (%) (v (p) — V) + %(\_/i(p) —0)'0%hi (%) (v (P) — ¥

where




e To simplify writing, define:

: zi—zE_1§;k< 0)& = D%(®)%

o by = ZE—lg;k( aur
e The quadratic cost function:

%(p):;{kzﬂkh (Zauj ) %([Bp]i—zi)z}wR(p)-

e Separable paraboloidal surrogate
o Cost function is convex — De Pierros’ trick:

Beli= Z bij Py = Za” {om N i>+[Bpn]i}

o BZ 5K, D(0WYi(%))AD(r¥)

where .
Zaij =1, Vi, off >0
=1



o Move summation over pixels outside quadratic term
p N 2
(8P ~202< 3 oty (Lo~ o) + (B~ 2

o Separable paraboloidal surrogate function:
p N K

Q(p’ pn) — Z Z th a'IJerJ ZI z th a*JerJ
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e [terative beam hardening algorithm
o Take first derivative of Q and set equal to zero:

0Q(p;p")
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Ordered Subsets

Each S, is a backprojection
Replace “full” backprojections with partial backprojections
Partial backprojection based on angular subsampling
Cycle through subsets of projection angles
Pros

o Significantly accelerates “convergence”

o Very simple to implement

o Reasonable images in a few iterations

o Regularization easily incorporated
Cons

o Does not converge to true maximizer

o Makes analysis of properties difficult



—— no subsets
—— 10 subsets
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, Beam Hardening Correction

e 128x 128 Bone/water test phantom
e FOV 50 cm, 100 cm source-detector distance, 150x 150sinogram, parallel
beam geometry

True Phantom Soft Tissue Correction



Noise-free Results

Joseph & Spittal Statistical Reconstruction
Standard Deviation 0.0026 Standard Deviation 0.0027



Noisy Results: 1.3 x 10'° counts

Joseph & Spittal Statistical Reconstruction
Standard Deviation 0.0040 Standard Deviation 0.0026



Profile Plots

soft tissue correction
iterative reconstruction
true object

Joseph and Spittal

—e— soft tissue correction
—— iterative reconstruction
—— true object

—— Joseph and Spittal

Noise-free Data Noisy Data



Thorax Phantom

True Phantom Soft Tissue Correction



Noisy Data: 1.55 x 10%° counts

Joseph & Spittal Statistical Reconstruction
Standard Deviation 0.110 Standard Deviation 0.113



Profile Plots

soft tissue correction
iterative reconstruction
true object

Joseph and Spittal
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Future Work

Model accuracy
o Improve the approximation to the log likelihood by using an actual sur-
rogate
o Implement 3-substance model (lodine contrast agent)
o Mixture models rk(x,y) € [0, 1]
o Joint density estimation and classification
Regularization
o Non-subjective choice for penalty parameters
o Joint penalties
Comparisons and experimental validation
o Compare with FBP (bias-variance)
o Real data
Computation time
o Software and hardware
o Algorithm design



