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Outline

e Group/Lab
e PET Imaging
e Statistical image reconstruction

Choices / tradeoffs / considerations:
1. Object parameterization
2. System physical modeling
3. Statistical modeling of measurements
4. Objective functions and regularization
5. Iterative algorithms
Short course lecture notes:
http://www.eecs.umich.edu/ ~fessler/talk
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e Ordered-subsets transmission ML algorithm
e Incomplete data tomography



Students

El Bakri, Idris Analysis of tomographic imaging
Ferrise, Gianni Signal processing for direct brain interface
Ghanei, Amir Model-based MRI brain segmentation
Kim, Jeongtae Image registration/reconstruction for radiotherapy
Stayman, Web Regularization methods for tomographic reconstruction
Sotthivirat, Saowapak Optical image restoration
Sutton, Brad MRI image reconstruction
Yu, Feng (Dan) Nonlocal regularization for transmission reconstruction

Collaborations with colleagues in Biomedical Engineering, EECS, Nuclear Engineering, Nu-
clear Medicine, Radiology, Radiation Oncology, Physical Medicine, Anatomy and Cell Biol-
ogy, Biostatistics



Research Goals

Develop methods for making “better” images
(modeling of imaging system physics and measurement statistics)

e Faster algorithms for computing/processing images
e Analysis of the properties of image formation methods
e Design of imaging systems based on performance bounds

Impact

ASPIRE (A sparse iterative reconstruction environment) software

(about 40 registered sites worldwide)

PWLS reconstruction used routinely for cardiac SPECT at UM,

following 1996 ROC study. (> 2000 patients scanned)

Pittsburgh PET/CT “side information” scans reconstructed using ASPIRE



PET Data Collection
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PET Reconstruction Problem - lllustration

A(X)

{Yi}

Image

Sinogram




Reconstruction Methods
(Simplified View)

Analytical lterative
(FBP) (OSEM?)




Reconstruction Methods

.
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Why Statistical Methods?

e Object constraints (e.g. nonnegativity)
e Accurate models of physics (reduced artifacts, quantitative accuracy)

(e.g. nonuniform attenuation in SPECT, scatter, beam hardening, ...)

e System detector response models (possibly improved spatial resolution)
e Appropriate statistical models (reduced image noise or dose)

(FBP treats all rays equally)

e Side information (e.g. MRI or CT boundaries)
e Nonstandard geometries (“missing” data, e.g. truncation)

Tradeoffs...
Computation time
Model complexity
Software complexity
Less predictable (due to nonlinearities), especially for some methods
e.g. Huesman (1984) FBP ROI variance for kinetic fitting
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Five Categories of Choices

1. Object parameterization: A(X) vs A

2. System physical model: s(X)

3. Measurement statistical model Y; ~ |?
4. Objective function: data-fit / regularization
5. Algorithm / initialization

No perfect choices - one can critique all approaches!

Choices impact:
e Image spatial resolution
Image noise
Quantitative accuracy
Computation time
Memory
Algorithm complexity



Choice 1. Object Parameterization

Radioisotope . Np Series expansion
spatial distribution — A(X) = A(X) = Z Ajbj(X) < “basis functions”
=1

Pixelized approximation 5\(2)
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Basis Functions

Choices
e Fourier series e Polar grids
e Circular harmonics e Logarithmic polar grids
e Wavelets e “Natural pixels”
o Kaiser-Bessel windows e Point masses
e Overlapping disks e pixels / voxels
e B-splines (pyramids) o

Considerations
Represent object A(X) “well” with moderate njy
system matrix elements {a;j} “easy” to compute
The ng x n, system matrix: A= {a;j}, should be sparse (mostly zeros).
Easy to represent nonnegative functions
e.g., if A; > 0, then A(X) > 0, i.e. b;(X) > 0.
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Point-Lattice Projector/Backprojector

ith ray
A

a;j's determined by linear interpolation
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Projections (sinograms) of uniform disk object:
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Choice 2. System Model
System matrix A= {a;; } elements:

a;j = P[decay In the jth pixel is recorded by the ith detector unit]
Physical effects

e scanner geometry e detector response

e solid angles e dwell time at each angle
e detector efficiency e dead-time losses

e attenuation e positron range

e Scalfter e noncolinearity

e collimation o

Considerations
e Accuracy vs computation and storage vs compute-on-fly
e Model uncertainties
(e.g. calculated scatter probabilities based on noisy attenuation map)
e Artifacts due to over-simplifications
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“Line Length”
System Model

ith ray

Ao

“Strip Area@”
System Model

ith ray

\
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a 2 length of interslSection

A
g; = area




Sensitivity Patterns

z i ~ s(x)) = is(x,)

Line Length Strip Area
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Forward- / Back-projector “Pairs”
Forward projection (image domain to projection domain):

AN

E[\G]Z/S(?)?\(X)diz %a;j)\j = [AA];, or E[Y]
=1

Backprojection (projection domain to image domain):
Np

/ ks
Ay=14> aji
i=1 =1

Often A’ is implemented as By for some “backprojector” B # A’

Least-squares solutions (for example):
A = [NA Ay # [BA| By
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Mismatched Backprojector B +# A’ (3D PET)
A A (PWLS-CG) A (PWLS-CG)

(64 x 64 x 4) Matched Mismatched

18



Horizontal Profiles
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Choice 3. Statistical Models
After modeling the system physics, we have a deterministic “model.”

Statistical modeling is concerned with the “ ~ ” aspect.

Random Phenomena

Number of tracer atoms injected N
Spatial locations of tracer atoms {XJR_,
Time of decay of tracer atoms {Ti}\_,
Positron range

Emission angle

Photon absorption

Compton scatter
Detection § # 0
Detector unit {9,
Random coincidences
Deadtime losses
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Statistical Model Considerations

e More accurate models:

o can lead to lower variance images,

o can reduce bias

o may incur additional computation,

o may involve additional algorithm complexity

(e.g. proper transmission Poisson model has nonconcave log-likelinood)

e Statistical model errors (e.g. deadtime)
e Incorrect models (e.g. log-processed transmission data)
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Statistical Model Choices

e “None.” Assume Y —r = AA. “Solve algebraically” to find A.
e White Gaussian noise. Ordinary least squares: minimize ||Y — A\||?
e Non-White Gaussian noise. Weighted least squares: minimize

Ng Np
IV = ANy = 5w (v~ [AN))?, where [A)] =Y ah;
= j=1

Ordinary Poisson model (ignoring or precorrecting for background)
Y; ~ PoissoR[AA]i}

Poisson model
Y; ~ POISSOR[AA]i + i}

Shifted Poisson model (for randoms precorrected PET)
Yi — Yiprompt_ YidelayN POiSSOI{[AMi i 2ri} - 2ri
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Transmission Phantom

FBP 7hour FBP 12min

J

Thorax Phantom
ECAT EXACT
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Effect of statistical model

lteration: 1 3 5 7
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Choice 4. Objective Functions

Components:
e Data-fit term
e Regularization term (and regularization parameter 3)
e Constraints (e.g. nonnegativity)

®()A) = DataFit(Y,A\ +r) — B- Roughness(})
JAN

A = argmax®(})

A>0
“Find the image that ‘best fits’ the sinogram data”

Actually three choices to make for Choice 4 ...

Distinguishes “statistical methods” from “algebraic methods” for Y = AA.”
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Why Objective Functions?
(vs “procedure” e.g. adaptive neural net with wavelet denoising)

Theoretical reasons
ML is based on maximizing an objective function: the log-likelihood
ML is asymptotically consistent
ML is asymptotically unbiased
ML is asymptotically efficient (under true statistical model...)
Penalized-likelihood achieves uniform CR bound asymptotically

Practical reasons
e Stability of estimates (if ® and algorithm chosen properly)
e Predictability of properties (despite nonlinearities)
e Empirical evidence (?)
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Choice 4.1: Data-Fit Term

Least squares, weighted least squares (quadratic data-fit terms)
Reweighted least-squares

Model-weighted least-squares

Norms robust to outliers

Log-likelihood of statistical model. Poisson case:

()‘ Y) — IOgP ZIY| Iog ‘|‘ rl ([AAL T ri) — Iog)/i!

Poisson probability mass function (PMF):
PY = y:A] = [T, e W /yi! where Y= AA+r

Considerations
e Faithfulness to statistical model vs computation
e Effect of statistical modeling errors
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Choice 4.2: Regularization

Forcing too much “data fit” gives noisy images
lll-conditioned problems: small data noise causes large image noise

Solutions:
e Noise-reduction methods
o Modify the data (prefilter or extrapolate sinogram data)
o Modify an algorithm derived for an ill-conditioned problem
(stop before converging, post-filter)
e True regularization methods
Redefine the problem to eliminate ill-conditioning
o Use bigger pixels (fewer basis functions)
o Method of sieves (constrain image roughness)
o Change objective function by adding a roughness penalty / prior
Np
RA) =5 5 WwAj—A)
J=1keN;
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Noise-Reduction vs True Regularization

Advantages of “noise-reduction” methods
Simplicity (?)
Familiarity
Appear less subjective than using penalty functions or priors
Only fiddle factors are # of iterations, amount of smoothing
Resolution/noise tradeoff usually varies with iteration

(stop when image looks good - in principle)

Advantages of true regularization methods
Stability
Predictability
Resolution can be made object independent
Controlled resolution (e.g. spatially uniform, edge preserving)
Start with (e.g.) FBP image = reach solution faster.
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Unregularized vs Regularized Reconstruction

ML (unregularized)

Penalized likelihood

PP P®

lteration:
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Roughness Penalty Function Considerations

Np
RM=Y 3 w(j—Ad
J=1keN;
Computation
Algorithm complexity
Uniqueness of maximum of ®
Resolution properties (edge preserving?)
# of adjustable parameters
Predictability of properties (resolution and noise)

Choices
e separable vs nonseparable
e quadratic vs nonquadratic
e CONvex VS nonconvex

This topic is actively debated!
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Nonseparable Penalty Function Example

Example

X | X3 R(X) = (X2 —X1)° 4 (X3 — X2)° + (X5 — Xa)°

+ (X4 — X1)? + (X5 — X2)?

X5

2|2 2 331 13
2| 1 2| 2 2| 2
R(X) =1 R(X) =6 R(x) =10

Rougher images = greater R(x)
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Penalty Functions: Quadratic vs Nonquadratic

Phantom Quadratic Penalty Huber Penalty
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Summary of Modeling Choices

1. Object parameterization: A(X) vs A
2. System physical model: s(x)

3. Measurement statistical model Y; ~ |?
4. Objective function: data-fit / regularization / constraints

Reconstruction Method = Objective Function + Algorithm

5. Iterative algorithm
ML-EM, MAP-OSL, PL-SAGE, PWLS+SOR, PWLS-CG, ...
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Choice 5. Algorithms

Attenuation ...

Measurements
System
Model
x(N) Iteration
- P
Parameters

Deterministic iterative mapping: x"™ =M (x(")

All algorithms are imperfect. No single best solution.

35
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Ideal Algorithm

X" = arg )r(r;%@(g() (global maximum)
stable and convergent {x(W} converges to x* if run indefinitely
converges quickly {x(W} gets “close” to x* in just a few iterations
globally convergent lim,x™ independent of starting image
fast requires minimal computation per iteration
robust Insensitive to finite numerical precision
user friendly nothing to adjust (e.g. acceleration factors)
monotonic d(x) increases every iteration
parallelizable (when necessary)
simple easy to program and debug
flexible accommodates any type of system model

(matrix stored by row or column or projector/backprojector)
Choices: forgo one or more of the above
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®(x) and @

0.8f

0.6F

0.4F

0.2f

Optimization Transfer lllustrated

P — Objective P}/
Surrogate @




Convergence Rate: Fast

Low Curvature /
Large Steps /
\ Fast Convergence |,/
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hi(1) and Q(I;1")
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Slow Convergence of EM

L: Log-Likelihood
Q: EM Surrogate
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Paraboloidal Surrogates

Not separable (unlike EM)

Not self-similar (unlike EM)

Poisson log-likelihood replaced by a series of least squares problems.
Maximize each quadratic problem easily using coordinate ascent.

Advantages
Fast converging
Instrinsically monotone global convergence
Fairly simple to derive / implement
Nonnegativity easy (with coordinate ascent)

Disadvantages
e Coordinate ascent .. column-stored system matrix
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Ordered Subsets Algorithms

e The backprojection operation appears in every algorithm.

e Intuition: with half the angular sampling, the backprojection would look
fairly similar.

e To “OS-ize” an algorithm, replace all backprojections with partial sums.

Problems with OS-EM
e Non-monotone
e Does not converge (may cycle)
e Byrne’s RBBI approach only converges for consistent (noiseless) data
e .. unpredictable
What resolution after n iterations?
Object-dependent, spatially nonuniform
What variance after n iterations?
ROI variance? (e.g. for Huesman’s WLS kinetics)
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OSEM vs Penalized Likelihood

43
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Contrast-Noise Results
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Relative Activity

Horizontal Profile
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Noise Properties

Cov{} ~ [00]  [0®] Cov{y} [DHe]" [0%]

e Enables prediction of noise properties

e Useful for computing ROI variance for kinetic fitting

IEEE Tr. Image Processing, 5(3):493 1996
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Summary

General principles of statistical image reconstruction

Optimization transfer

Principles apply to transmission reconstruction

Predictability of resolution / noise and controlling spatial resolution
argues for regularized objective-function

e Still work to be done...

An Open Problem

Still no algorithm with all of the following properties:
Nonnegativity easy
Fast converging
Intrinsically monotone global convergence
Accepts any type of system matrix
Parallelizable
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Fast Maximum Likelihood Transmission Reconstruction
using Ordered Subsets

Jeffrey A. Fessler, Hakan Erdogan

EECS Department, BME Department, and
Nuclear Medicine Division of Dept. of Internal Medicine
The University of Michigan



Transmission Scans

Photon Source
Detector Bins

P
Y; ~ PoissoR b;exp —Za”uj 4T
=1

Each measurementY; is related to a single “line integral” through the object.
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Transmission Scan Statistical Model

p
Y; ~ Poissor bjexp —Za”-pj +rip,i=1,...,N
=1

N number of detector elements

Y; recorded counts by ith detector element

b, blank scan value for ith detector element

a;j length of intersection of ith ray with jth pixel

Y linear attenuation coefficient of jth pixel

ri contribution of room background, scatter, and emission crosstalk

(Monoenergetic case, can be generalized for dual-energy CT)
(Can be generalized for additive Gaussian detector noise)
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Maximum-Likelihood Reconstruction

L= arg rr;%x_(p) (Log-likelihood)
u>0

L(W) = iYilog {bi exp(—i a;u,-) +ri| — {bi exp(—i a;u,-) + 1
= =1 =1

Transmission ML Reconstruction Algorithms
Conjugate gradient

Mumcuoglu et al., T-Ml, Dec. 1994

Paraboloidal surrogates coordinate ascent (PSCA)
Erdogan and Fessler, T-Ml, 1999

Ordered subsets separable paraboloidal surrogates
Erdogan et al., PMB, Nov. 1999

. . imization(EM)-algorit
. Lange and Carson, JCAT, Apr. 1984
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Parabola Surrogate Function

e h(l) =ylog(be™+r)— (be”' +r) has a parabola surrogate: qi(r?

e Optimum curvature of parabola derived by Erdogan (T-Ml, 1999)
e Replace likelihood with paraboloidal surrogate

Zh (Z a”uj> > Qu(p ™ Zq.m (Z a”uj>

. qi(,;l> IS a simple quadratic function

e lterative algorithm:

U™ Y = arg maxQy (p; p™)
u=>0

e Maximizing Q:(i; 1™) over pis equivalent to (reweighted) least-squares.

e Natural algorithms

o Conjugate gradient
o Coordinate ascent
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Separable Paraboloid Surrogate Function

e Parabolas are convex functions
e Apply De Pierro’s “additive” convexity trick (T-Ml, Mar. 1995)

- i (n gy
D i = ,Zl 2 12 [ & (M — 1’ )] - [Au“‘)]i where & = J;au

e Move summation over pixels outside quadratic

= _iqi(rrr? (i ainj)

> Q") = i% a”CI.m( ai(py — 1) + [Au(m}i)

=1
N

P
:ZQ(Z?)(M), where Q5 (x) £ q'm( )+ {A“(m]i)
= =

e Separable paraboloidal surrogate function =- trivial to maximize (cf EM)



Iterative algorithm:

KN WG
a.QZ' (p' )
0 = argma) = |7+ B
ap2Q21' ()
- B J_ -+
_ |y 1 0 (n)
= |H T L(™)
i OUZQZJ( )auj d.
_ [, B0 —bel—[A])]
= J , ] =1,...
! Zg\lzlaizjaici(m N

ci(”>’s related to parabola curvatures

Parallelizable (ideal for multiprocessor workstations)
Monotonically increases the likelihood each iteration
Intrinsically enforces the nonnegativity constraint
Guaranteed to converge if unigue maximizer

Natural starting point for forming ordered-subsets variation
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Ordered Subsets Algorithm

Each S, is a backprojection

Replace “full” backprojections with partial backprojections
Partial backprojection based on angular subsampling
Cycle through subsets of projection angles

Pros
Accelerates “convergence”
Very simple to implement
Reasonable images in just 1 or 2 iterations
Regularization easily incorporated

Cons:
e Does not converge to true maximizer
e Makes analysis of properties difficult
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Phantom Study

12-minute PET transmission scan

Anthropomorphic thorax phantom (Data Spectrum, Chapel Hill, NC)
Sinogram: 160 3.375mm bins by 192 angles over 180°

Image: 128 by 128 4.2mm pixels

Ground truth determined from 15-hour scan, FBP reconstruction / seg-
mentation
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Algorithm Convergence

Transmission Algorithms

1600 | | | | | | | ]
A ‘A‘#W#AAAAAAAAAAA
‘Q‘v‘v"" ——Y—Y—Y Y Y Y Y Y Y Y
1550F -
S A A AC A LS A A A A A A A A S A A A S A S R

1500F -
1450} -
@
D
s | [ H-------------
O 1400} -
g
'§ —¥— PL-OSTR-1
5‘1350 L — PL-OSTR-4
@)

———————— —— PL-OSTR-16
—o— PL-PSCD
1300F
1250F 4’ -
Initialized with FBP Image
1200 1 1 1 1 1
0 5 10 15 20 25 30
Iteration

57



Reconstructed Images

FBP ML-OSEM-8 ML-OSTR-8
2 Iterations 3 iterations
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Reconstructed Images

FBP PL-OSTR-16 PL-PSCD
4 Iterations 10 iterations
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Segmented Images

FBP ML-OSEM-8 ML-OSTR-8
2 Iterations 3 iterations

D D
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Segmented Images

FBP PL-OSTR-16 PL-PSCD
4 Iterations 10 iterations
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Segmentation performance
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Quantitative Results

Segmentation Errors

NMSE
FBP FBP
ML-OSEM ML-OSEM
ML-OSTR ML-OSTR
PL-OSTR PL-OSTR
PL-PSCD PL-PSCD

0% 6.5% 0% 5.5%
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FDG PET Patient Data, PL-OSTR vs FBP

-PL T-PL -PL T-PL

® -®

E-FBF T-FBP E-FBF T-FBP

(15-minute transmission scan | 2-minute transmission scan)



Truncated Fan-Beam SPECT Transmission
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Truncated Truncated Untruncated
FBP PWLS FBP
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