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Abstract variance expressions &f(¢) for both type Il and type IlI
models.
The statistics of photon counting by systems affected
by deadtime are potentially important for statisticalimage |l. STATISTICAL ANALYSIS OF DEADTIME

reconstruction methods. We present a new way of ana-we define a “photon arrival” to mean a photon interact-
lyzing the moments of the counting process for a counigly with the scintillator with sufficient deposited energy to
system affected by various models (_)f degdtlme relatedtpg‘;ger detection. The photon arrival processt) counts
PET and SPECT imaging. We derive simple and exagfe number of arrivals during the time intervl ¢], and
expressions for the first and second moments of the nuRa photon recording process(t) counts the number of
ber of recorded events under various models. From dicorded events. We assume that) is a homogeneous
mean expression for a SPECT deadtime model, we derjpygisson process with rate(photon arrivals per unit time)

a simple estimator for the actual intensity of the underlyghich stays constant with time. We also assume, for the

ing Poisson process; simulations show that our estimat@ke of simplicity, that is known and deterministic.
is unbiased even for extremely high count rates. _ o
A. Asymptotic Analysis via Renewal Theory

|. INTRODUCTION The counting processes in all three types of systems

Every photon counting system exhibits a characteris@iéscussed above are examples of “renewal processes” [3],
calleddeadtime Since the pulses produced by a detect@nd renewal theory has been the classical basis for dead-
have finite time duration, if a second pulse occurs befofigne analysis [5]. A renewal process involves recurrent
the first has disappeared, the two pulses will overlap Bgtterns connected with repeated trials. Roughly speak-
form a single distorted pulse [1]. Depending on the sy#1d, if after each occurrence of a pattefn the random
tem, one or both arrivals will be lost. In PET or SPECProcess starts from scratch in the sense that the trials fol-
scanners, the length of pulse resolving time, often juéwing an occurrence of form a replica of the whole
called “deadtime”, denoted, is around2us. Counting Process, then the process qualifies as a renewal process.
systems are usually classified into two categories: nonplrwe define& to be the stafeof “the counter is ready
alyzable (type I) or paralyzable (type II). In a nonparalyZ0 record the next photon arrival”, then after each occur-
able system, each recorded photon produces a deadtiméede of¢, the counting process is statistically equivalent.
lengthr; if an arrival is recorded &t then any arrival from A very useful random variable to definel$, the wait-

t tot 4+ r will not be recorded. In a paralyzable systening time between one renewal and the next (renewal here
each photon arrival, whether recorded or not, produceggans return t&). Note that in the context of photon
deadtime of length; if there is an arrival at, then any ar- counting system, wittf defined as above, the number
rival from ¢ to t + = will not be recorded. In some SPECTOf renewals from O ta is almost exactly the number of
systems [2], we encounter a third model that is simildgcorded events from O to If 7= has ensemble mearx

to the paralyzable model: if two photons arrive within and variance 2, then the number of renewals from Otfo

of each other, then neither photon will be recorded)( Y (t), is asymptotically Gaussian distributed [6] [3] with
due to pulse pile-up); we call this the type Ill model. Théhe following moments:

asymptotic moments of the nonparalyzable model are well - - 5, 3

known [3]. For the paralyzable model, the exact expres- EY(6)] ~ t/pe, Var[Y ()] ~ tog [, (1)

sion for the mean of the number of recorded events fro - . .
: . . v%erew indicates that the ratio of the two sides tends to
time O tot, denoted’ (¢), has been derived previously [4]. . .

. unity ast/pe — oo. Hence asymptotically, the mean and
However, for the type Ill model, only an approximate ex-

pression for the mean number of recorded events has beerror type 11l deadtime, we define renewal as “return€to
derived [2]. In this paper, we derive the exact mean anfter recording an event”.




variance of the waiting time between renewals forms a sort For analysis purposes, we artificially divide the time
of “duality” relationship with the mean and variance of thanterval[0, t] inton segments of lengtheachj.e., t = nd.
number of renewals. We have

For the other two deadtime models, if we try to derive
ETY (t)] from E[T¢], it is much more difficult to obtain a Y(t) = Z Y (¢4, (14 1)0), (5)
simple closed form expression because kEH&s] we get ;
is probably an infinite sum and it is often not easy to ob-

tain every term in this sum; the variance Bf is even EY(@)] = ZE (1+ 1)0)], (6)
more complicated. Therefore, in the following section,

we describe a new approach for deriving the moments of _ / fs(s 7)
counting processes.

B. Exact Mean and Variance of Counting Processeg where we define the following piecewise constant func-

We first consider a general counting proc&ssvhere
Y (t1,t;) denotes the number of recorded events durin .
. . . 0<3<n—-1
the time interval(¢1,t;] and Y (¢) is a shorthand for otherwise
Y (0,t). We define the instantaneous rate R — [0, co) ' ®)
of the procesd’ (¢) as

" { E[Y (5, (+ D8))/6. if s € (35, (i + 1)3],
07

Sincev(t) is well-defined almost everywhere in the inter-
() 2 lim E[Y (s + 8) — Y (s)]/9, @) val [0, ¢] and ETY (s, 5+ 4)]/4 is uniformly bounded, by
§—0 the Lebesgue Dominated Convergence theorem (LDCT)

and the instantaneous second momeniR — [0, co) as: 71,

a(s) 2 lim E[(Y (s +8) = ¥ (5))°]/4. 3) lim /R fs(s)dp(s) = /R lim fs(s)dp(s)
t
We also define the correlation functigh: R? — [0, oc) = /0 v(s)ds. 9)
as:
Hence, we have the following simple general expression
B(s1,s9) 2 lim E[(Y(s14+8) = Y(s1)) - for the mean of the counting process in terms of its instan-
81,620 taneous rate:
(Y(s2 +02) = Y(s2))]/(d102).  (4) ¢
E[Yt]:/'ysds (10)
We assume © 0 )

. . We consider the second moment by a similar argument:
(i) v and o are well-definedu-almost every- y g

where, andg is well defined y;-almost , e )

everywhere, ang andj3 are integrable with EIY*(1)] = E[(ZY(“S’ (i+1)5))7]

respect tox and u; over any finite interval 1220 o aa

and rectangle, respectively; _ E[Y2(i8, (i + 1)8))] + 2 Z Z
(i) E[Y(s,s+d)]/d andE[Y?%(s,s+ §)]/é are =0 =0 j=itl

uniformly bounded for alk ands € (0, 1); EIY (i6, (i + 1)0)Y (j6, (7 + 1)8)] (11)
(iii) E[Y (s1,51461)Y (52, 53402)]/(616,) is uni- = / gs(s)dp(s)

formly bounded for alls;, sz, andéy, d; € =

(07 1) such tha(81781—|—($1)ﬂ(82782+52) = +2/2h5(81782)dﬂ2(51782)7 (12)

0. ®

where we define the following piecewise constant func-
These Assumptions hold for a wide variety of countinggns:

processes, including any homogeneous Poisson process

with finite intensity. gs(s) 2 and0 < j < n—1

i andp- denote Lebesgue measuresivandR?, respec- otherwise,
tively. (13)

{ E[Y2(8, (G +1)8))/6, if s € (76, (j + 1)¢]
0,



and [1l. SINGLE PHOTON COUNTING
EIY (46, (14 1)8)- if s1 € (i, (i +1)d], A. Mean and Variance of Recorded Singles Counts,

. Y (55, ) 52 € (76, (7 +1)], Model Type Il
hs(s52) = U+ 1)o)}/0% gngd ,Zf 1n<_ 2< | Firstwe consider the paralyzable model in which if the
1 Y AN [

waiting time for a photon arrival is less than then this
photon is not recorded. We derive the mean and variance
of Y(¢), the number of recorded events from time O to
timet. We observe that (¢) inherits the stationary incre-
ment property of the arrival proced§(t). We first derive
E[Y(0,6)], where we pick < 7 such that the number of

0, otherwise.
(14)
Sincef is well-defined almost everywherel(ity ¢] x [0, ¢]
and E[Y (s1,s1 + 6)Y(s2,89 + 6)]/6* is uniformly
bounded, by LDCT and Fubini’s Theorem [7],

lim [ hs(s1,s2)dpz(s1, 52) recorded events durir@, d]is either 0 or 1. Lef/; de-
60 JR2 note the time of the first photon arrival after time O; it is
_ / lim hs (51, 2)dpia (51, 52) exponentially dlstrlbuteq. If there_z is an arrivalgt = s,

R26—=0 0 < s < ¢, and there is no arrival between— = and

s (in fact, we only need to make sure there is no arrival
= / / Bls1, sz)ds1dsy. (15 petweens —  and 0,i.e, N(0) = N(s — 1) = 0, since
the first arrival after O occurs &), then there will be a

Similarly, one can show that recorded event during the interv@, 5]. Thus

t
(lgim/gg(s)d,u(s):/ a(s)ds. (16) oo
=0 Ji 0 EY(0.0] = [ PIY©.8)= 1T = dfr, (5)ds
Thus using (12), (15), and (16), we have the following 05
general expression for the second momerit ¢f): _ / P[N (s —7,0) = 0|y = s]/r, (s)ds
£ t t 0
EY%:/ d—|—2// ,59)dsqdsy. (17 J
[Y=(1)] ; a(s)ds ; 515(81 s2)dsadsy. (17) _ / o~AMT=8) ) o= g
0

In the context of counting processes with deadtime, which
includes all random processes considered in this paper, the
process satisfies thazlditional assumption

= e V. (23)

Hence by the definition given in (2), the instantaneous rate
(iv) there exists a positived, such that of Y(t) is
Vo € (0,00), Y (s,s46) < 1.

This assumption greatly simplifies the derivations for the
moments of counting processes affected by deadtimg, by (21), we easily obtain the following resuitd,

y =A™V, (24)

since foré < §g < T, [1])
E[Y?(s,s+8)]=E[Y(s,s+6 18
[ (S 5+ )] [ (8 s+ )] ( ) E[Y(t)] _ /\te_M. (25)
using0? = 0 and1? = 1, so
_ The variance ofY (¢) for the type Il model is (see Ap-
= . 1
als) =7(s) (19) pendix A):
Thus we obtain the following corollary of (17) for random
processes satisfying assumptions (i) to (iv): VarlY (t)] = Me ™7 (1 — (207 — AT2/t)e™7).  (26)

E[Y2()] = E[Y (t)] + 2 /t /t B(s1,s9)dsods;. (20) Figure 1 shows the mean and variance of the singles count
0 for a detector affected by deadtime of type Il. Since the
Furthermore, ifY (¢) has stationary increments, thenmean and variance can differ greattyt) is not Poisson.
v(s) is constantand(sy, s3) = 4(0, sz — s1) and we can

further simplify the results (10) and (20) to the foIIowmgB Mean and Variance of Recorded Singles Counts,

Model Type 1lI
EY @] = o1 . (21) Now we turn to the type of system described in [2],
E[Y2(t)] = ~vt+ 2/ (t - 5)8(0,s)ds. (22) in which if the waiting time for a photon arrival is less
0 thanr, then neither this photon nor the previous photon
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Ideal mean: E[N(t)] Ideal mean: E[N(t)]
18] —  Typellmean: E[Y()] ] 181 ——  Type lll mean: E[Y()]
Type Il variance: Var[Y(t)] - = Type Il variance: Var[Y(t)]

Fig. 1 Mean and variance for paralyzable (type Il) systemBjg. 2 Mean and variance for type Ill systems, with
witht = 1s, 7 = 2us. t=1s, 7 = 2pus.

will be recorded. We again observe thatt) inheritsthe V. COUNT RATE CORRECTION FORSYSTEM
stationary increment property of the arrival procé&g). TYPE Il
We first derivel’[Y (0, 6)], where we picld < 7 such that

i e For a quantitativelyaccurate reconstruction, we must
the number of recorded events durifig §] is still either O

correct for the effect of deadtime to avoid underestimation

or 1. Hence, of source activity. For type Il systems, Engelagtdl [2]
proposed the following correction formula,
ETY(0,9)]
5 N 2Y  6Y
- / PLY (0,8) = 1Ty = 5] fr, (s)ds A=), GD
0

which they obtained by solving an approximate mean
waiting time expression up to second order iby means
5 A(r—g) X7y A of t.he expansiom = a + b7 + crz._ We propose to
= / e U M Aem P ds estimate the true count rate by solving numerically our
0 exact expression (29ge., solve

)
- /0 P[N (s —7,0) = 0]P[(s, s + 7) = 0] fr, (s)ds

= e, (27)
Y R N
. . . — =V (32)
Hence for this system, the instantaneous rate as defined t
in(2)is .
for A givenY and¢. One could solve analytically the ex-
oy, —A2T act mean waiting time expression up to second order in
v =T, (28) °r CC : .
which yields exactly the same estimator as (31), but this
estimator does not the mean waiting time expression ex-
and by (21), the expected number of recorded events for a . gt P
tvpe Il svstem is exactly: actly. Figure 3 compares our new estimator (32) and the
yp y y estimator proposed in [2]. It shows that our new estimator
is unbiased even at very high count rates. The error bars
are not shown in the figure as they are smaller than the
_ _ _ plotting symbols. Whet is large, the standard deviation

EIY ()] = Me™ 7", (29

derivation due to space constraints): these estimates have extremely small standard deviations.
By solving (32) numerically, we obtain essentially perfect
Var[Y ()] = Ate 27 4 2e72V (At — A7 — 1) deadtime correction for a type 1l system.

+e T (ANEPE — NPT 42 — 20t + 4)7).(30)
V. DISCUSSION
Figure 2 shows the (exact) mean and variance of the sin-We have analyzed the mean and variance of the
gles countY (¢) for type Ill systems. Agairt' (¢) is not recorded singles counts for two distinct models of
Poisson. deadtime. In both cases, the variance can be significantly



- VI. APPENDIX A

A

ourestimate ol | We derive the variance df (¢) for deadtime model II,
S e ’ the paralyzable model. We first deriy0, s). We con-
: sider two cases.

.- ] CAsEl:0<s<T
o ] We pické such thatd < 6 < s < s+46 < 7.
i ] Two recorded events cannot correspond to photons that
o < ] arrived withinr of each other. Hence far < s < 7,
+ ] E[Y(0,5)Y(s,s 4+ §)] = 0, and by the definition given
it A 1 in(2): 5(0,s) = 0.
T CASE2: T <s<t

We pickd suchthat < 7 ands+§ < tand$ < s—r.
Fors > 7, Y(0,6) andY (s, s + ¢) are statistically inde-
less than the mean, indicating that the counting statistRg@ndent, since the event “there is an arrival dufig]”
are not Poisson in the presence of deadtime. Deadtiffiétatistically independent from the event “there is an ar-
losses can be significant in practical SPECT and PEival during(s, s +4]", because they are at leastpart in
systems, particularly in fully 3D PET imaging and irfime. Hence by (23),
SPECT transmission measurements with a scanning lin o
source. The count rates for a detector block (PET) (%Er Y(0.0)Y (5,5 +6)] = E°[Y (0,8)] = (Ade ' )% (33)
detector zone (SPECT) can be significant enough to yie{dq
non-Poisson statistics for the total counts recorded by
the block or zone. Howev&rin the practical situations B(0,5) = (Ae™ )2 (34)
that we are aware of, the count rates for individual . _ .
detector elements within the block or zone are usually COmbining the above two cases and using (22) yields
not high enough to correspond to significant deadtime t
losses. Even though the variance of the counts recorded E[Y?(t)] = ~t+ 2/ (t — s)(Ae™7)%ds
by a block can be significantly lower than the mean, the . T g
variance of the counts recorded by iadividual detector = AT A [t =) (AT (35)
glementis nevertheles_s quite close Fo the mean _a'iﬁjsing VarlY (1)] = E[Y2(1)] — E2[Y(1)], with (25)
likely to be well approxmated by a Po_lss_o_n dlstrlbutlorhnd (35), and simplifying yields (26).
Furthermore, the correlation between individual detectors
will be fairly small. Thus it appears that statistical image VIl. REFERENCES
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Fig. 3 20 realizations, with = 10s, 7 = 2us.
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