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Abstract— The object-dependent space-variant smooth-
ing properties of penalized-likelihood estimators using con-
ventional space-invariant regularizations have been demon-
strated in [1,2]. We have presented a technique in [3,4] which
provides nearly space-invariant resolution properties for the
two-dimensional case. This is accomplished through a mod-
ification of the penalty term in the penalized-likelihood ob-
jective function, and is based on least-squares fitting of a
parameterized local impulse response to a desired global re-
sponse. That technique is extended here for the fully three-
dimensional case.

I. INTRODUCTION

Conventional space-invariant penalties for penalized-
likelihood image reconstruction yield images with object-
dependent nonuniform spatial resolution properties [1,2].
For example, in emission tomography such estimators tend
to smooth the image more in high count regions than in
low count regions. In addition, if one views the local point
spread functions (PSFs) (1, 5], the smoothing properties
can be highly anisotropic. Anisotropic 3D PSFs mean that
objects within an image are distorted nonuniformly. For
example, a spherical objects may appear elliptical due to
more blurring in one direction. (Such distortions are no-
ticeable in reconstructions of phantom data in (3, 6] and
have been noticed by colleagues in a clinical setting.)

We have demonstrated a technique that provides nearly
space-invariant resolution properties in [3, 4] for tomo-
graphic systems operating in two-dimensional mode. This
technique controls the resolution properties of the recon-
structed image through a modified penalty term in the
penalized-likelihood objective function. This penalty de-
sign is based on a parameterization of the penalty term,
followed by the determination of penalty term coefficients.
We determine these coefficients through a least-squares fit-
ting of a parameterized local impulse response’ to an arbi-
trary desired global shift-invariant response. In this paper,
we extend our penalty design method to the fully three-
dimensional case, using the 3D point spread function and
a 3D penalty.

As in [3,4], we are concerned with the resolution prop-
erties of penalized-likelihood estimators iterated until con-
vergence, and an idealized tomographic system whose in-
trinsic geometric response is nearly space-invariant. In this
context, spatial resolution nonuniformity is due to the ob-
jective function, not the system geometry.

This work was supported in part by the Whitaker Foundation and
NIH grants CA-60711 and CA-54362.

1Local impulse response and local point spread function are used
synonymously.

II. BACKGROUND

The following approach is outlined for emission tomog-
raphy, however, the method applies generally. Let A =
[A1,-..,Ap) represent the nonnegative emission rates for
an object discretized into p pixels and lexicographically or-
dered, where ' denotes the Hermitian transpose. Projection
measurements, ¥, of the object are obtained and are Pois-
son distributed with mean Y()\) = AJ), where A is the
system matrix. »

Penalized-likelihood estimators often have the form

A(Y) = argmax L0, ¥) ~ BRQY),

where A is the set of feasible images, L(),Y) is the log-
likelihood, /8 is the regularization parameter which con-
trols the noise-resolution tradeoff, and R(}) is a rough-
ness penalty. For our penalty design we choose a pairwise
quadratic penalty, in which case the roughness penalty may
be written in matrix form: R(A) = $A'RA.

The tool by which we design the penalty and investigate
the resolution properties of the estimator is the local im-
pulse response. The local impulse response [1] at the jth

pixel is defined as

pA+ded) —pd) 9
-0 1) - 3}\]‘

u(d),

where p(A) is the mean reconstruction of the estimator and
e’ represents the jth unit vector. This definition of the
local impulse response is dependent on the estimator A,
the object A, and the pixel position j.

The matrix A can often be factored into A = Di¢]G,
where G'G is nearly shift-invariant and diagonal matrix
D[c;}contains known ray-dependent effects such as detector
efficiency and attenuation factors®. In this case, the local
impulse response is approximately [1,3]

U~ [GWG + RY™'G'WGE, (1)

where W £ D[c}/¥;())] and RY™ 2
symmetric component of R.

{(R+ R') is the

1I1. PENALTY DESIGN METHODS
A. Penalty Matriz Parameterization

Ideally, we would like to be able to find a penalty matrix
R that yields an arbitrary desired space-invariant response.

2This factorization is often possible for PET systerns.
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Figure (a) shows a conventional shift-invariant “first-order” kernei, kpry. This kernel is an equivalent representation of the shift-

invariant penalty matrix Rg. Figures (b-f) show several individual basis functions of the form given in (2). These functions are linearly
combined to form arbitrary shift-invariant kernels, kg, as given by (3). Thus we may parameterize arbitrary space-invariant penalty

matrices, R.

lowever, since practical penalties use only a small neigh-
rorhood of pixels for the penalty support, we parameterize
R in terms of a small number of penalty coefficients.

For a shift-invariant quadratic penalty, the penalty ma-
rix R can be thought of as a space-invariant filtering op-
rator. Therefore the operation of multiplying R by the
mage A can be equivalently represented as the convolution
f the image with a kernel®,

RA=kpxxx A

‘or example, a kernel for a conventional* “frst-order”
renalty is shown in Figure la. Thus, choosing a space-
avariant R can be thought of as filter selection.

Since the local impulse response (1) depends only on
TY™ | we parameterize the kernel kg in terms of a small
amber of symmetric bases such as those having the fol-
Jwing form

28(q,r,8) —8(g—k,7~ 1,5 ~m)
—8(g+Ek, v +1,5+m), (2)

birim)(q,T,8) =

rhere &(-) represents a Kronecker delta function, and g,
, and s represent spatial coordinates. Several bases of
his form are shown in Figure 1b-f. A collection of such
(k4,m)(@,7,8) functions for various (k,l,m) triples can
xm a basis for valid kernels of space-invariant %™ ma-
rices. For example, for R™™ with the same support as the
ernel shown in Figure 1a, the set {b(1,0,0),(0,1,0),0(0,0,1)}
Figure 1b-d) forms a basis.

In general, any valid kernel for a space-invariant penalty
1atrix R¥Y™ may be specified by a linear combination of
uch basis functions:

kR = > Tutmbim = Br (3)

kdm

there rim represent the basis coefficients. Let r represent
he vector of all 74, for a given neighborhood of support.
fn,, is the number of (k, !, m) triples and hence the number
f basis functions, then B is a p x n,, matrix with column

3We use = since the left hand side is a vector but the right hand
de is a 3D image. The two sides are equal in that the vector is a
xicographic reordering of the 3D image.

*This kernel is most natural when there is equal sampling in all
irections. However, such a kernel can be modified for nonuniform
umpling.

vectors of lexicographically ordered basis functions, b ; m)-
For nonnegative definite R*™ the elements of r must be
nonnegative.

As discussed in [1], space-invariant roughness penalties
yield nonuniform resolution properties. For uniform reso-
lution properties, we require a space-variant regularization.
Therefore, we extend the kernel representation (3) and let
R be parameterized by a space-variant set of coefficients
r’/, where j represents the jth pixel.

Let (gj,74,5;) denote the spatial coordinates of the jth
pixel and define B’ to be a p x n,, matrix of shifted basis
functions, with each column having elements defined by the
lexicographically ordered bases, bk m)(q—q;,7—7;,5—5;).
In the case of a space-invariant R matrix, Re? = B’r. To
parameterize space-variant R, we define the jth column of
R by

R¢) = B, (4)
The parameterization (4) allows for the specification of
valid shift-variant R¥™ by the set of coefficients {r/}?_, .

j:-l?"'!p'

B. Circulant Stmplifications

Because the system matrix A is quite large, direct eval-
uation of the local impulse response in (1) is not feasible.
For a single pixel j, we may find /7 using iterative methods.
However, this is not practical for penalty design.

Although G'W @G is not globally shift-invariant, it is ap-
proximately locally shift-invariant and we make the follow-
ing approximation [7] to (1) using properties of circulant
matrices

: ’ J
R R e e
F{G'WGel} + BF{R¥™ e}

(5)
where the division is an element-by-element division and
F{-} represents the discrete 3D Fourier operator.

Recalling (4), since local impulse responses are generally
smoothly varying with location, R*™el ~ B’r/. Making
this substitution in (5) gives us I (r7), the local impulse
response in terms of the local penalty coefficients, 7. In
principle, we may find the coefficients r’ by minimizing
117 (r7)— 1|2, where [} is a desired global response shifted to
position j. This is a nonlinear least-squares minimization
and appears impractical for routine use in penalty design,
since it must be solved for 7 = 1,...,p.
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C. Linearized Penalty Design
Define L’ (r7) £ F{l5.(r’)} to be the frequency response
of the local impulse response approximation Fa(r?) and let

Ly & F{ly} be the desired frequency response. We want
to choose 17 so that L7 (r?) =~ L, i.e.

F{G'WGel}

L) = F{G/WGQj} +ﬁF{Bj£j}

~Ly  (6)

Rearranging (6) by cross multiplying and simplifying yields

(7)

where O represents element-by-element multiplication. We
can now design the penalty coefficients as a weighted least
squares solution to (7). Specifically, we choose r’ such that

F{G'WG} o (1 Ly) ~ Ly ® F{AB17},

© = arg min [| 717 - &1, (8)
¥’ VDL F{8B’} (9)
& = VDI - L)F{G'WGe}. (10)

The matrix V' is a least-squares weighting. This linear
least-squares minimization may now be performed by using
the NNLS (nonnegative least-squares) algorithm in [8].

D. Proposed Penalty Design
One natural choice for the desired impulse response is

the unweighted response given by

ly =[G'G +BR,"'G'Ge”, (11)

where Ry is a shift-invariant penalty.

Using the same simplifications for circulant matrices dis-
cussed previously to find an approximate Ly, and choosing
V = D[F{(G'G + BRy)e’}], we reduce (9) and (10) to

HJ
dj

D[F{G'Ge}|F{B}
D[F {kp, JF{G'WGe'},

(12)
(13)

It

which are independent of 3. Therefore, solving (8) using
(12) and (13) yields the coefficients, {; ’_;- These co-
efficients specify our proposed penalty matrix R*, which

provides for increased spatial uniformity.

IV. SiMULATION RESULTS

To investigate the performance of this penalty design
technique and to compare the resolution characteristics of
a conventional shift-invariant penalty with our proposed
penalty we consider the digital phantom presented in Fig-
ure 2. The emission image is 64 x 64 x 16 with a warm
background ellipse, a cold left disc, and hot right disc with
relative emission intensities of 2, 1, and 3. The PET Sys-
tem model included nonuniform attenuation. Projections
are obtained from a simulated system with 8 rings (cov-
ering -10 to 10 degrees off the XY plane) and 32 angles
around the Z-axis.

Fig. 2. Digital phantom used for investigation of resolution prop-
erties. The number in the upper left corner indicates the slice
and the remaining numbers and white + marks indicate sample
positions for local point spread function investigation.

For the conventional regularization we chose a smoothing
kernel similar to the one in Figure la (but modified for Z
sampling). For the proposed penalty, we used a computa-
tionally efficient implementation® of (8) using (12) with the
basis set  {b(1,0.0),50,1,0)>0(1,1,0), b(1,~1,0) 8(0,0,1) b(1,0,1)»
b(l,O,—l))b(O,l,l)7b(O,l,—l)} and (13) with the same RO as
in the conventional case.

To demonstrate the relative spatial uniformity of the con-
ventional and the proposed penalties we used (1) to calcu-
late local point spread functions (PSFs). Since shift-variant
results are expected for the conventional regularization, we
chose six different locations in the object for our investiga-
tion. These points are represented by the white - marks
and are numbered #1 to #6 in Fig. 2.

Results of this impulse response survey are presented
in Figures 3-4. For both penalties, PSF contours at 10,
25, 50, and 75% of peak value are shown. These contours
cover three slices (i.e.: one local PSF has contours in three
planes). Conventional results are shown in the left group
and the proposed penalty is shown in the right group.

For the conventional penalty there is greater smoothing
in the hot region (#3) and less smoothing in the cold region
(#1). The smoothing is also anisotropic, all of the PSFs
smooth more in the Y direction than in the X direction.
There is also asymmetric smoothing in Z for #4-#6.

For the proposed penalty, the PSF contours tend to be
much more radially symmetric in the XY plane and overall
are much more spatially uniform. (The PSFs in the right
group are very similar.) The asymmetries in the Z direc-
tion are also much improved. (More improvement may be
possible with a larger penalty support. Note, bases such as
b(1,1,1) were not used.)

5The computationally efficient method used here is an extension of
the methods used in the 2D case presented in [3],
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Fig. 3. Local PSFs for conventional penalty (left group) and for the proposed penalty (right group) for positions #1 - #3 in slice 9.
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Fig. 4. Local PSFs for conventional penalty (left group) and for the proposed penalty (right group) for positions #4 - #6 in slice 13.

V. DISCUSSION

Conventional space-invariant regularization methods for
senalized-likelihood image reconstruction produce images
vith space-variant resolution properties. We have pre-
iented a new regularization scheme for increased spatial
miformity. The proposed method is based on fitting a pa-
-ameterized local impulse response to a desired response.
T'his method yields nearly space-invariant and nearly sym-
netric local point spread functions.

The importance of uniform resolution is an open ques-
sion. Having uniform resolution is logical for cross-patient
sr multiple-image single patient studies, or for comparing
-esolution matched reconstruction methods. Although one
may arguably desire space-variant resolution properties,
sne would most likely want to be able to control regional
resolution properties. The proposed methods can be mod-
ified to provide such control, allowing for predictable and
intuitive specification of resolution properties.

This paper concentrates on the resolution (bias) prop-
arties of different estimators, future work will include a
variance investigation. These local impulse response stud-
ies suggest improved resolution uniformity, however recon-
structions on real data must also be performed.
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