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Abstract 
Traditional space-invariant regularization schemes 

in tomographic image reconstruction using penalized- 
likelihood estimators produce images with nonuniform 
resolution properties. The local point spread functions that 
quantify the local smoothing properties of such estimators 
are not only space-variant and asymmetric, but are also 
object-dependent even for space-invariant systems. We 
propose a new regularization scheme for increased spatial 
uniformity and demonstrate the resolution properties 
of this new method versus conventional regularization 
schemes through an investigation of local point spread 
functions. 

1 Introduction 
Statistical image reconstruction methods provide im- 

proved noise and resolution properties over conventional 
nonstatistical methods such as filtered backprojection 
(FBP). However, methods based purely on the maximum- 
likelihood estimate produce overly noisy images. This 
noise may be reduced by stopping the iterative procedure 
used to find the maximum-likelihood estimate before con- 
vergence [ I], iterating until convergence followed by post- 
smoothing [2], or including a penalty term in the likelihood 
objective function [3]. 

Penalized-likelihood methods have the advantage of al- 
lowing arbitrary regularizations including edge-preserving 
penalties and penalties incorporating anatomical side or 
boundary information. Regularization can also improve 
the conditioning of the problem leading to faster conver- 
gence. 

However, there are also disadvantages with conven- 
tional regularization schemes. Space-invariant penalties 
lead to object-dependent nonuniform resolution proper- 
ties [4,5]. Specifically, such estimators tend to smooth the 
image more in high count regions than in low count re- 
gions. The local point spread functions that quantify this 
space-variant smoothing due to the estimator can also be 
highly asymmetric, indicating a preferred smoothing direc- 
tion. 

Since conventional regularizations produce images with 

nonuniform resolution properties, one cannot select the 
regularization parameter intuitively. For example, with 
FBP the noise-resolution tradeoff is controlled through the 
cutoff frequency, fc, of the filter. There is a direct relation- 
ship between fc and the global full-width half-maximum 
(FWHM) resolution of the reconstructed image. Such a 
direct relation does not exist with penalized-likelihood re- 
constructions with conventional regularizations. 

One attempt to correct for the resolution nonuniformity 
has been presented in [4]. This regularization, based on the 
aggregate certainty of measurement rays intersecting each 
pixel, provides increased spatial uniformity over conven- 
tional space-invariant regularization. However, the local 
point spread functions are still highly asymmetric. 

We present a new parameterized penalty function, 
whose coefficients are found by a least-squares fitting 
of the parameterized local impulse response to a shift- 
invariant response. This new method provides increased 
spatial uniformity compared to the certainty-based method 
of [4] and conventional regularization techniques. We 
demonstrate this increased uniformity through an investi- 
gation of the local point spread functions. 

2 Background 
Let X = [XI, . . . , Xp]’  represent the nonnegative emis- 

sion rates for an object discretized into p pixels. De- 
tectors surrounding the object count photons (SPECT) 
or photon pairs (PET) that are emitted from the object. 
Measurements are denoted by the random vector Y = 
[Yl , . . . , YN]‘. These measurements are Poisson with a 
mean given by 

where aij represent nonnegative constants that characterize 
the tomographic system, and ri are nonnegative constants 
that specify the contribution due to background events 
(background radiation, scatter, etc.). Given measurements 
y, we would like to reconstruct A. 
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We will focus on penalized-likelihood estimators of the 
form 

q Y )  = a r g y G y w , Y )  - PR(4,  

where A is the set of feasible images, L(X, y) is the log- 
likelihood, P is the regularization parameter which con- 
trols the noise-resolution tradeoff, and R(X) is a roughness 
penalty. 

For the Poisson model, the log-likelihood is 

N 

L(X,y) = c y i l o g y , ( x )  -%(A) .  
i=l 

Pairwise roughness penalties have the following form 

v -  

where Nj is a neighborhood of pixels around pixel j ,  $ is 
a symmetric convex function, and wjk = wkj . 

In the case of a quadratic penalty, +(x) = x2/2 and the 
roughness penalty may be written in matrix form, R(X) = 
$XrRX, where the matrix R has elements defined by 

A conventional choice for a space-invariant penalty using a 
first-order neighborhood is to choose W j k  = 1 for the hor- 
izontal and vertical neighbors. For a second-order penalty, 
one often includes wjk = l/fi for the diagonal neighbors 
in addition to the first-order neighbors. 

The mean reconstruction of an estimator is designated 
by 

A X )  = -wm1 = 1 i (y ) f (y ;  W Y .  

The local impulse response [4] is defined as 

where ej represents the j th  unit vector. This definition 
of the local impulse response is dependent on the estima- 
tor, the object, and the pixel position j .  From [4], for 
penalized-likelihood with quadratic penalties, the local im- 
pulse response may be well approximated by 

Z j  M [A’DxA + PR]-lA’DxAej, (1) 

where A is a matrix of the { a i j }  elements, and Dx is a 
diagonal matrix with elements l/%. 

Typically, A’A is a shift-variant operator even with- 
out Dx. However, for PET systems it is often possible to 

factor A such that A = D[ci]G, where G‘G is approx- 
imately shift-invariant and represents the geometric sys- 
tem response. The diagonal matrix D[ci], contains ray- 
dependent effects such as detector efficiency and attenua- 
tion. With this factorization, equation (1) becomes 

(2) Z j  M [G‘WG + PRI-lG‘WGej, 

where diagonal matrix W has elements c ; / y , .  
These approximations of the local impulse response 

form a very important set of tools for the design and eval- 
uation of different regularization methods. 

3 Methods 
Ideally, we would like to be able to find a penalty that 

yields an arbitrary desired space-invariant response. For 
example, we may desire penalty functions that produce a 
global impulse response with a Gaussian shape and some 
specified FWHM resolution. If we restrict ourselves to the 
quadratic penalty, we can formulate this problem in terms 
of the design of the penalty matrix R. 

Specifically, we would like to find R as 

P 

where d ( l j ,  I* )  is some distance measure between the ac- 
tual response, d and a desired space-invariant response, l*. 
Theoretically, we could solve (3) by plugging in (2), how- 
ever this procedure is not computationally tractable. 

In practice, conventional penalties use only a small 
neighborhood of pixels for the penalty support (i.e.first- 
and second-order neighborhoods). Therefore we reformu- 
late the problem in terms of these small support neighbor- 
hoods. 

For the shift-invariant quadratic penalty, the matrix R 
can be thought of as a space-invariant filtering operator. 
Therefore the operation of R on the image X can be repre- 
sented as the convolution of the image with a kernel, 

RX = k~ * *A. 

For example, the conventional first-order penalty described 
beforehand has the kernel, 

0 -1 

kRo [ -; -; -:I. (4) 

The design of R can be thought of as a filter design prob- 
lem. However, selection of a kernel, k ~ ,  cannot be com- 
pletely arbitrary. Since R must be symmetric, must 
be symmetric through the origin. Additionally, R should 
yield a zero penalty for uniform regions. This is equiva- 
lent to specifying a zero DC gain on the filter represented 
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by k ~ .  (The coefficients must sum to zero.) Lastly, we 
require that R be nonnegative definite to guarantee finite 
solutions. 

The following equation forms basis for valid kernels of 
space-invariant R, 

b ( k , l ) ( & )  = 2 6 ( z l ,  22)-6(21-k, 22-z)-6(sl+k,zZ+l), 

where 6(.) represents a Kronecker delta function and, 21 
and x2 represent spatial coordinates. For example, for a 
first-order neighborhood, 

0 0  0 -1 0 

0 -1 0 
b(1,O) = [ -; ; -:I b(0,l) = [ 0 2 0 1  

is a valid basis for the kernels of R. In general, any valid 
penalty kernel may be specified by 

k R ( z 1 , z Z )  = r k l b ( k , l )  (217x2) = BE, 
k,lEN 

where r k l  represent the basis coefficients. Letting repre- 
sent the set of all Tkl for a given neighborhood of support, 
N ,  and B represent a matrix of basis functions, we write 
this linear combination more compactly. For nonnegative 
definite R, the elements of must be nonnegative. 

In general the penalty specified by R does not have to be 
space-invariant. In fact, we require a space-variant regular- 
ization for uniform resolution properties. Since this is the 
case, we extend idea of a kernel representation and let R be 
represented by the space-variant set of kernels IC; = Brj. 

We may now rewrite (3) as 

P 
k P  { E  } k = l  = min d(z’({rk}i=1)7 z*)* ( 5 )  

{.“I;=,>_!? j = l  

Although this requires less computations than (3), this op- 
timization is still impractical since all rj must be found 
simultaneously. 
3.1 Proposed Penalty Design 

Since G’G is approximately shift-invariant, we may 
approximate G’G by Q‘aQ, where Q is a 2D discrete 
Fourier matrix operator and fl is a diagonal matrix rep- 
resenting a frequency domain filtering operator. (This is 
the well-known l / p  response of the backprojected projec- 
tion operator.) Although G’ W G  is not shift-invariant, it 
is approximately locally shift-invariant and we make the 
following approximation to (2) 

@ ( R )  M [Q’OjQ + PQ’*jQ]-lQ’fljQej 

where the division is an element-by-element division, 
C l j  = F{G’WGej}, and !l?j = F{Rej}. ( F { . }  rep- 
resents the discrete 2D Fourier operator.) Therefore, since 
Rej = k;, 

Combining (5)  and (6) yields a separable minimization 
and we may find rj individually by 

- rj = arg min d ( P  (rj), I*). (7) 
20 

If d(z, y) = 115 - y1I2, then this is a constrained nonlinear 
least-squares (CNLLS) problem which must be solved for 
each pixel j. Since this is fairly time consuming to calcu- 
late, we would like to simplify this optimization. 

Consider the unweighted response given by 

If & is chosen to be space-invariant, the response, l;,  is 
approximately space-invariant since G’G is nearly shift- 
invariant. We choose (8) as the desired response, 1”. Defin- 
ing Lj = F(l ($) } ,  we have 

F{ G‘ WGej } 
F{G’WGej} + ,BF{Bzj} 

Lj(?j)  M - 
F{ G‘Gej } 

F{G‘Gej} + / 3 F { k ~ , } ’  
Li  M 

We want to choose rj so that Lj(r j )  M Lg. Cross- 
multiplying and simplifying yields 

F{G’WGej} 0 F { ~ R , }  M F{G‘G} 0 F{Brj} ,  

where o represents an element-by-element multiplication. 
Note that this step has eliminated the dependence on P. We 
now choose rj such that 

with 

This optimization may be performed by applying a non- 
negative least-squares for each pixel position, j, for exam- 
ple, the NNLS algorithm in [6]. 
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3.2 Practical Implementation 
While the penalty design given by equation (9) gives a 

simple form for the calculation of E J ,  it still requires too 
much computation for practical use. Since G'G is nearly 
shift-invariant, we only need to calculate the 2D-FFT (fast 
Fourier transform) of G'Gej for a single j .  Similarly, 
F { B }  requires the one-time calculation of the 2D-FFT of 
each of the 2D basis functions. Therefore 9 may be pre- 
calculated. For 8, F { ~ R , }  may be precalculated but we 
must compute the 2D-FFT of G' WGej for every pixel j. 
This step makes direct computation of (9) a slow process. 

One can show that in an idealized continuous system, if 
the continuous equivalent of W is a radially-constant sino- 
gram scaling operator, then the continuous equivalent of 
G' W G  can be expressed as a position-independent blur- 
ring operation [5]. Therefore, this should be approximately 
true in the discrete case. If W were radially-constant, we 
would only need one computation of F{G'WGej}. 

In practice we cannot expect the radially-constant as- 
sumption to hold. However, since the projection of a sin- 
gle pixel forms a relatively narrow trace in sinogram space 
(only a few radial bins in width), W can be well approx- 
imated by a position-dependent radially-constant operator 
Wj . Therefore, G' WGej approximately equals a shifted 
G'WjGeio for an arbitrary fixed pixel io (ie.: the center 
pixel in the image). 

Note that for the unconstrained case, equation (9) has 
the closed form linear solution rj = [+'+]-l+'dj. Also 
note that the unconstrained solution is a linear function of 
the elements of the weighting matrix W .  Since, the uncon- 
strained solution is linear with respect to W ,  we can form a 
linear operator (matrix) mapping {wii} to {rj}. However, 
this requires a different mapping for every pixel j. 

For the radially-constant W J  , we require only a single 
linear mapping from to {$ }. Call this matrix opera- 
tor T .  We may find T by superposition. Define W'* to be 
weighting matrix with radially-constant values having unit 
values at angle n, and zero otherwise. For each angle let 

m, = F { G ' w ~ ~ G }  o ~ { k ~ , } ,  72 = 1,. . . ,na 
and M = [ml , . . . , m,,], where na is the number of an- 
gular samples. Therefore, 

T = [+'+]-l@M 
is a linear operator that solves the unconstrained optimiza- 
tion on (9). It is straightforward to modify the NNLS al- 
gorithm of [6] using these ideas to provide the constrained 
solution. 

In this way, the majority of calculations may be pre- 
computed for a given system geometry and the proposed 
regularization specified rj may be calculated very quickly 
for specific measurement realizations. (Recall the elements 
of W are given by c:/%, or estimated by c:/yi.) 
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Figure 1: Digital phantom used for investigation of resolu- 
tion properties of different regularizations. 

4 Results 
This section provides simulation results comparing the 

relative resolution uniformity of different regularization 
schemes. Figure 1 shows the 128 x 64 emission image 
(A) used for the investigation. The image has a warm back- 
ground ellipse, a cold left disc, and hot right disc with rel- 
ative emission intensities of 2, 1, and 3, and attenuation 
coefficients of 0.003,0.0096, and 0.01 3/mm, respectively. 
The PET system model included projection data with 128 
radial bins over 110 angles uniformly spread over 180" 
with 3 mm pixels, 6 mm wide strip integrals (3 mm center- 
to-center spacing), and detector efficiencies with a standard 
deviation of 0.3. 

We investigate the resolution properties of four dif- 
ferent quadratic regularizations: (I) The conventional 
space-invariant first-order penalty given by the kernel in 
(4), (11) the certainty-based penalty developed in [4], 
(111) the constrained nonlinear least-squares (CNLLS) 
penalty given by equation (7), and (IV) the reduced 
computationally-efficient penalty we have proposed in this 
paper. For the CNLLS and proposed penalty design, we 
choose a second-order basis and select & in equation (8) 
to be the conventional space-invariant first-order penalty, 
as above. We specify the regularization parameter (p) to 
correspond to a target resolution 4.0 pixels FWHM resolu- 
tion for each of these penalties. 

To demonstrate the relative spatial uniformity of these 
regularization methods we use equation (1) to calculate lo- 
cal point spread functions (PSFs). Since we expect these 
responses to be space-variant, we choose four different lo- 
cations in the object for our investigation. These points are 
represented by the white + marks in Figure 1. 

Results of this impulse response survey are presented in 
Figures 2-5. For each penalty PSF contours at 25, 50, 75, 
and 99% of peak value are shown. Above each set of con- 
tours are estimates o f  the mean and standard deviation of 
the FWHM resolution in pixels, which quantify the mean 
resolution and radial variation at that location. 

688 

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 8, 2009 at 09:04 from IEEE Xplore.  Restrictions apply. 



m = 3.566. s=0.511 m = 4.171, s=0.466 m = 4.349, s=0.490 m = 3.902, s=0.527 g @ ~ ~ ; ~ / : f q  
30 30 46 

42 44 46 48 62 64 66 68 82 84 86 88 62 64 66 68 

Figure 2: Local PSFs for space-invariant penalty. 
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Figure 3: Local PSFs for certainty-based penalty. 
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Figure 4: Local PSFs for CNLLS penalty. 

m - 3.857, s=0.169m = 3.994, s=0.215 m = 3.861, s=0.066m = 3.971, s=O.156 ::p/:m/;@pl 32 

30 30 46 

42 44 46 48 62 64 66 68 82 84 86 88 62 64 66 68 

Figure 5:  Local PSFs for proposed penalty. 

For the space-invariant penalty in Figure 2, the local 
PSFs are highly asymmetric and space-variant, blurring 
more in high count regions (85,33) than in low count re- 
gions. The certainty-based penalty shown in Figure 3 pro- 
vides some improvement making the mean FWHM close 
to 4.0 pixels. However, the responses are still fairly asym- 
metric. PSFs for the CNLLS penalty are shown in Figure 4. 
Note these contours are nearly radially-symmetric and near 
the 4.0 pixel FWHM target resolution. The PSFs of the 
proposed regularization method are presented in Figure 5. 
These contours are also highly symmetric and the average 
FWHM resolution is very close to the target resolution of 
4.0 pixels. In this case, there is little to be gained from the 
computationally expensive CNLLS penalty. 

5 Discussion 
Conventional space-invariant regularization methods 

for penalized-likelihood image reconstruction produce im- 
ages with space-variant resolution properties. At present, 
the only method available that attempts to provide more 
uniform resolution is the certainty-based method of [4]. 
However, as we have seen in our investigations, this 

method does not provide truly uniform resolution proper- 
ties. 

We have presented a new computationally-efficient reg- 
ularization scheme for increased spatial uniformity. The 
proposed method is based on fitting an unweighted re- 
sponse with an arbitrary space-invariant penalty (equation 
(8)). This method offers nearly space-invariant and nearly 
symmetric local point spread functions at FWHM resolu- 
tions very close to specified target resolutions. 

Providing a regularization scheme that yields uniform 
resolution properties makes the selection of the regulariza- 
tion parameter (p) more intuitive. One may simply spec- 
ify the desired global resolution of the reconstructed im- 
age. While one may arguably desire space-variant reso- 
lution properties, one would most likely want to be able 
to control regional resolution properties, while maintain- 
ing radially-symmetric responses. These methods can be 
modified to provide such control, allowing for predictable 
and intuitive specification of resolution properties in image 
reconstruction. 

A more complete presentation of the proposed regular- 
ization technique including an investigation of the noise 
properties can be found in [7]. 
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