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Abstract 

We present a new algorithm for penalized-likelihood 
emission image reconstruction. The algorithm monotoni- 
cally increases the objective function, converges globally 
to the unique maximizer, and easily accommodates the 
nonnegativity constraint and nonquadratic but convex 
penalty functions. The algorithm is based on finding 
paraboloidal surrogate functions for the log-likelihood at 
each iteration: quadratic functions that are tangent to the 
log-likelihood at the current image estimate, and lie below 
the log-likelihood over the entire nonnegative orthant. 
These conditions ensure monotonicity. The paraboloidal 
surrogates are maximized easily using existing algorithms 
such as coordinate ascent. Simulation results show that 
the proposed algorithm converges faster than the SAGE 
algorithm, yet the new algorithm is somewhat easier to 
implement . 

I. INTRODUCTION 

Statistical methods for tomographic image reconstruc- 
tion are increasingly being used clinically. For widespread 
acceptance of statistical methods, fast converging algo- 
rithms are essential. This paper summarizes a new al- 
gorithm for reconstructing emission images from Poisson 
sinogram measurements. The algorithm 

0 monotonically increases the objective function, 
0 is globally convergent, 
0 naturally accommodates the nonnegativity constraint, 
0 requires less CPU time per iteration than the space- 

alternating generalize EM (SAGE) algorithm [l]. 

For reconstruction problems (such as 2D PET and 
SPECT) where the system matrix G can be precomputed 
and stored, we recommend this new algorithm over our 
previously published algorithms for penalized-likelihood 
reconstruction. For reconstruction problems where 
the system matrix is represented in factored form [2], 
methods that can better exploit this representation, such 
as the conjugate-gradient algorithm, appear to remain 
preferable. 

11. THE PROBLEM 
We assume the usual Poisson statistical model for the 

emission measurements Y,, i = 1, . . . , nd: 

j=1 

where X j  is the unknown activity in the jth pixel, 
j = 1,. . . , np, the T;’S denote background events such 
as random coincidences and scatter, and A = { a ; j )  

represents the system model, including ray-dependent 
factors such as attenuation and detector efficiency. 
We assume the T;’S and a;j’s are known nonnegative 
constants. We assume T; > 0, which is reasonable 
and realistic since any real PET scan will have nonzero 
randoms. (It also turns out to simplify our algorithm.) We 
wish to estimate = [XI,. . . , A,,] from a measurement 
realization { Y,  = y;}ril. The log-likelihood is: 

neglecting constants independent of A. For penalized- 
likelihood image reconstruction, one seeks the image that 
maximizes an objective function as follows: 

where R(X) is a roughness penalty included for regular- 
ization. The resolutiodnoise tradeoff is controlled by the 
regularization parameter ,B [3]. The problem is to find the 
maximizer using an algorithm that converges rapidly 
and that requires as little CPU time per iteration as pos- 
sible. Usually these are conflicting requirements, since 
often one can modify an algorithm to converge in fewer 
iterations, but at the expense of more work per iteration. 
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Fig. 1 Illustration of 1D parabolic surrogate function. Note that pi( l ;  l a )  5 hi ( l )  for 1 2 0. 

111. THE NEW ALGORITHM 
We had previously recommended the SAGE algorithm 

[l] as a fast globally-convergent algorithm for this prob- 
lem. The construction of the SAGE algorithm requires 
certain minimizations that are somewhat unusual in the to- 
mographic literature, and must be implemented carefully 
to achieve reasonable CPU time per iteration. 

The new algorithm we propose is based on the follow- 
ing simple idea, illustrated in one dimension in Fig. 1. 
Since the log-likelihood L(X) is difficult to maximize di- 
rectly, we endeavor to find a surrogatefunction Q(X; An) 
that is easier to maximize, and maximize that function at 
the nth iteration, i.e.: 

x ~ + ’  = arg max Q ( X ;  - (5 )  
X > O  

- -_- 
If we choose the sequence of surrogate functions Q(A; An) 
properly, then the sequence of iterates {An} will converge 
to the maximizer A. The SAGE algorithm is indirectly 
based on this idea; the expected conditional log-likelihood 
of the “complete” data space given the observed data is a 
type of surrogate function that indeed satisfies the condi- 
tions sufficient to ensure convergence [l]. However, the 
statistical construction of the surrogate functions for the 
SAGE and other EM algorithms can seem somewhat mys- 
terious. 

In this paper, we propose a new approach to construct- 
ing surrogate functions that uses only basic calculus prin- 
ciples. We can rewrite the log-likelihood L(X) in (3) as 
follows: 

i=l 

where 

j = I  

is the projection of the object along the ith ray, and 

hi(l) = y;log(l+ Ti) - ( 1  + Ti) 
is the marginal log-likelihood of the ith measurement. The 
hi functions are concave, and strictly concave if y; > 0. 

Our new proposed strategy for choosing the surrogate 
function Q is to first find one-dimensional parabolic sur- 
rogate functions qi(Z; Zp), as illustrated in Fig. 1, where 

Zp 4L [A”];. 

We then combine these 1D surrogate functions to form an 
overall surrogate function as follows: 

i=l 
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Provided that the 1D surrogate functions satisfy the fol- 
lowing three properties: 

0 qi(1;; 1;) = hi(Z?), 
0 Q$;; 1;) = iZ;(Zi”) 
0 q;(l;Z;) <: hZ(Z), vz 2 0, 

then it can be shown that the recursive algorithm given 
by ( 5 )  will monotonically increase L(X),  and in fact can 
be shown to converge globally by a proof similar to that 
in [l]. 

Using the fact that the hi’s are concave and that the first 
derivatives of the hi’s are convex, one can show [4] that 
the above three conditions will be satisfied if we choose 
parabolic surrogate functions as follows: 

1 
2 

qZ(1; 1;) = hi(1;)+iZi(z;)(Z-z;)- -n~(z;)(z-1;)2, (7) 

where 

(8) 
- [h$) - h(0) - liZi(l)] , 1 > 0 ni(q A 12. .  

{ 2  -hi( q ,  1 = 0. 

The basic idea is illustrated in Fig. 1. The parabolic surro- 
gate function qi(1; Zr) has the same value as the marginal 
log-likelihood h;(Z) at the current projection value Z = Zr, 
and has the same slope at that point. This is evident from 
(7). In addition, the parabolic function lies below h;(l) for 
all nonnegative 1. This is the key to having a monotonic 
algorithm’. The proof that this q; choice satisfies the third 
of the above three conditions is somewhat detailed, and is 
described in [4]. When the parabolic q; functions are “as- 
sembled” as in (6) to form an overall surrogate function, 
the final form of Q is a paraboloid, i.e. a quadratic form. 
One can maximize this quadratic form by any number of 
different methods. (Exact maximization is not necessary, 
due to the iteration (5) . )  We have chosen to use successive 
over-relaxation or coordinate ascent [5] for this maximiza- 
tion, since it easily accommodates both the nonnegativity 
constraint as well as nonquadratic penalty functions. 

In words, the algorithm alternates between two steps. 
The first step is to find the coefficients of the surrogate 
parabolas in (7) using (8). This involves a single-pass 
over the sinogram with trivial computation. Then the 
paraboloid (6) is partially maximized by a single cycle 
of coordinate ascent. This step requires roughly the 
equivalent of one forward and one backprojection, similar 
to most iterative algorithms. 

‘One could also find upproximuting parabolas using New- 
ton’s method, but these parabolas can cross h i ( / ) ,  and the result 
is a nonmonotonic algorithm that is not guaranteed to converge. 
Our construction using (8) avoids this problem. 

IV. RESULTS 
We used the same brain emission simulation reported 

in [l] to evaluate the proposed algorithm. In [l], the 
SAGE algorithm was compared to many alternatives, 
including Green’s one-step late (OSL) method [6], 
Kaufman’s bounded line search [7], and the generalized 
EM (GEM) algorithm of Hebert and Leahy [8]. We found 
that the SAGE algorithm converged faster than all of 
the above methods, so here we focus on comparing the 
proposed algorithm to just the SAGE algorithm. 

Figure 2 plots the increase in the log-likelihood 
@(An) - @(Ao) versus CPU time on a DEC Alphastation 
600 9333  workstation. The proposed algorithm 
(paraboloidal surrogates coordinate ascent (PSCA) 
algorithm) converges a little bit faster than SAGE, 
in part because it requires about 10% less CPU time 
per iteration, and in part because it increases @ more 
each iteration. The differences are modest since both 
algorithms converge quite quickly, so there is limited 
room remaining for improvement. The new algorithm is 
simpler to implement than SAGE as well. 

The resulting images are indistinguishable from those 
shown in [l]  since we used the same objective function 
and both PSCA and SAGE algorithms are globally con- 
vergen t. 

V. DISCUSSION 
The proposed algorithm is based on the “optimization 

transfer” principle. Since the original objective function 
is cannot be maximized directly, we instead maximize 

a sequence of surrogate functions 4(X;An).  The key is 
to choose surrogate functions that are easier to maximize 
than @, but have low curvature (high curvature surrogate 
functions lead to slow convergence rate [4,9]). Many al- 
gorithms in the literature are based (implicitly or explic- 
itly) on optimization transfer ideas, include EM, SAGE, 
grouped coordinate ascent [ 101, the convex algorithm [ 1 11, 
and ISRA [12-141. In almost all cases, the surrogate func- 
tions are separable, which makes them trivial to maxi- 
mize, but also means that they have very high curvature 
and hence poor convergence rate. The paraboloidal surro- 
gate functions that we have proposed here and in [4] are 
the first that we are aware of that are nonseparable. Gener- 
ally nonseparable functions are harder to maximize. For- 
tunately, a notable exception is quadratic surrogate func- 
tions, which is the choice we have made. This choice may 
be suboptimal; it is possible that there exist other nonsep- 
arable surrogate functions that are easily maximized but 
have even lower curvature and hence yield faster conver- 
gence rates. 
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Fig. 2 Comparison of convergence rate of proposed paraboloidal surrogate coordinate ascent (PSCA) algorithm versus SAGE 
algorithm. 
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