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Abstract
We present a new algorithm for penalized-likelihood

emission image reconstruction. The algorithm monotonically
increases the objective function, converges globally to the
unique maximizer, and easily accommodates thenonnegativity
constraint and nonquadratic but convex penalty functions.
The algorithm is based on finding paraboloidal surrogate
functions for the log-likelihood at each iteration: quadratic
functions that are tangent to the log-likelihood at the current
image estimate, and lie below the log-likelihood over the entire
nonnegative orthant. These conditions ensure monotonicity.
The paraboloidal surrogates are maximized easily using
existing algorithms such as coordinate ascent. Simulation
results show that the proposed algorithm converges faster than
the SAGE algorithm, yet the new algorithm is somewhat easier
to implement.

I. I NTRODUCTION

Statistical methods for tomographic image reconstruction
are increasingly being used clinically. For widespread
acceptance of statistical methods, fast converging algorithms
are essential. This paper summarizes a new algorithm for
reconstructing emission images from Poisson sinogram
measurements. The algorithm
• monotonically increases the objective function,
• is globally convergent,
• naturally accommodates thenonnegativity constraint,
• requires less CPU time per iteration than the space-

alternating generalize EM (SAGE) algorithm [1].

For reconstruction problems (such as 2D PET and SPECT)
where the system matrixG can be precomputed and stored,
we recommend this new algorithm over our previously
published algorithms for penalized-likelihood reconstruction.
For reconstruction problems where the system matrix is
represented in factored form [2], methods that can better
exploit this representation, such as the conjugate-gradient
algorithm, appear to remain preferable.

II. THE PROBLEM

We assume the usual Poisson statistical model for the
emission measurementsYi, i = 1, . . . , nd:

Yi ∼ Poisson
{
ȳi(λ

true)
}

(1)

ȳi(λ) =

np∑
j=1

aijλj + ri, (2)

where λj is the unknown activity in thejth pixel,
j = 1, . . . , np, the ri’s denote background events such as

random coincidences and scatter, andA = {aij} represents
the system model, including ray-dependent factors such as
attenuation and detector efficiency. We assume theri’s and
aij ’s are known nonnegative constants. We assumeri > 0,
which is reasonable and realistic since any real PET scan
will have nonzero randoms. (It also turns out to simplify our
algorithm.) We wish to estimateλ = [λ1, . . . , λnp] from a
measurement realization{Yi = yi}

nd
i=1. The log-likelihood is:

L(λ) ≡
nd∑
i=1

yi log ȳi(λ)− ȳi(λ), (3)

neglecting constants independent ofλ. For penalized-likelihood
image reconstruction, one seeks the image that maximizes an
objective function as follows:

λ̂ = argmax
λ≥ 0
Φ(λ), Φ(λ) = L(λ)− βR(λ), (4)

whereR(λ) is a roughness penalty included for regularization.
The resolution/noise tradeoff is controlled by the regularization
parameterβ [3]. The problem is to find the maximizer̂λ
using an algorithm that converges rapidly and that requires
as little CPU time per iteration as possible. Usually these
are conflicting requirements, since often one can modify an
algorithm to converge in fewer iterations, but at the expense of
more work per iteration.
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Figure 1: Illustration of 1D parabolic surrogate function. Note thatqi(l; l
n
i ) ≤ hi(l) for l ≥ 0.

III. T HE NEW ALGORITHM

We had previously recommended the SAGE algorithm [1]
as a fast globally-convergent algorithm for this problem.
The construction of the SAGE algorithm requires certain
minimizations that are somewhat unusual in the tomographic
literature, and must be implemented carefully to achieve
reasonable CPU time per iteration.

The new algorithm we propose is based on the following
simple idea, illustrated in one dimension in Fig. 1. Since
the log-likelihoodL(λ) is difficult to maximize directly, we
endeavor to find asurrogate functionQ(λ; λn) that is easier to
maximize, and maximize that function at thenth iteration,i.e.:

λn+1 = argmax
λ≥ 0
Q(λ; λn)− βR(λ) (5)

If we choose the sequence of surrogate functionsQ(λ; λn)
properly, then the sequence of iterates{λn} will converge to
the maximizerλ̂. The SAGE algorithm is indirectly based
on this idea; the expected conditional log-likelihood of the
“complete” data space given the observed data is a type of
surrogate function that indeed satisfies the conditions sufficient
to ensure convergence [1]. However, the statistical construction
of the surrogate functions for the SAGE and other EM
algorithms can seem somewhat mysterious.

In this paper, we propose a new approach to constructing
surrogate functions that uses only basic calculus principles. We

can rewrite the log-likelihoodL(λ) in (3) as follows:

L(λ) =

nd∑
i=1

hi([Aλ]i)

where

[Aλ]i =

np∑
j=1

aijλj

is the projection of the object along theith ray, and

hi(l) = yi log(l+ ri)− (l + ri)

is themarginal log-likelihoodof the ith measurement. Thehi
functions are concave, and strictly concave ifyi > 0.

Our new proposed strategy for choosing the surrogate
functionQ is to first find one-dimensional parabolic surrogate
functionsqi(l; lni ), as illustrated in Fig. 1, where

lni , [Aλ
n]i.

We then combine these 1D surrogate functions to form an
overall surrogate function as follows:

Q(λ; λn) ,

nd∑
i=1

qi([Aλ]i; l
n
i ). (6)

Provided that the 1D surrogate functions satisfy the following
three properties:
• qi(lni ; l

n
i ) = hi(l

n
i ),
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• q̇i(l
n
i ; l
n
i ) = ḣi(l

n
i )

• qi(l; lni ) ≤ hi(l), ∀l ≥ 0,

then it can be shown that the recursive algorithm given by (5)
will monotonically increaseL(λ), and in fact can be shown to
converge globally by a proof similar to that in [1].

Using the fact that thehi’s are concave and that the first
derivatives of thehi’s are convex, one can show [4] that the
above three conditions will be satisfied if we choose parabolic
surrogate functions as follows:

qi(l; l
n
i ) = hi(l

n
i ) + ḣi(l

n
i )(l − l

n
i ) −

1

2
ni(l

n
i )(l− l

n
i )
2, (7)

where

ni(l) ,

{ 2

l2

[
hi(l)− h(0)− lḣi(l)

]
, l > 0

−ḧi(l), l = 0.
(8)

The basic idea is illustrated in Fig. 1. The parabolic
surrogate functionqi(l; lni ) has the same value as the marginal
log-likelihood hi(l) at the current projection valuel = lni ,
and has the same slope at that point. This is evident from
(7). In addition, the parabolic function liesbelow hi(l) for
all nonnegativel. This is the key to having a monotonic
algorithm1. The proof that thisqi choice satisfies the third
of the above three conditions is somewhat detailed, and
is described in [4]. When the parabolicqi functions are
“assembled” as in (6) to form an overall surrogate function,
the final form ofQ is a paraboloid,i.e. a quadratic form. One
can maximize this quadratic form by any number of different
methods. (Exact maximization is not necessary, due to the
iteration (5).) We have chosen to use successive over-relaxation
or coordinate ascent [5] for this maximization, since it easily
accommodates both thenonnegativity constraint as well as
nonquadratic penalty functions.

In words, the algorithm alternates between two steps. The
first step is to find the coefficients of the surrogate parabolas in
(7) using (8). This involves a single-pass over the sinogram
with trivial computation. Then the paraboloid (6) is partially
maximized by a single cycle of coordinate ascent. This
step requires roughly the equivalent of one forward and one
backprojection, similar to most iterative algorithms.

IV. RESULTS

We used the same brain emission simulation reported in [1]
to evaluate the proposed algorithm. In [1], the SAGE algorithm
was compared to many alternatives, including Green’s one-step
late (OSL) method [6], Kaufman’s bounded line search [7], and
the generalized EM (GEM) algorithm of Hebert and Leahy [8].
We found that the SAGE algorithm converged faster than all of
the above methods, so here we focus on comparing the proposed
algorithm to just the SAGE algorithm.

1One could also findapproximatingparabolas using Newton’s
method, but these parabolas can crosshi(l), and the result is a
nonmonotonic algorithm that is not guaranteed to converge. Our
construction using (8) avoids this problem.

Figure 2 plots the increase in the log-likelihood
Φ(λn) − Φ(λ0) versus CPU time on a DEC AlphaStation
600 5/333 workstation. The proposed algorithm (paraboloidal
surrogates coordinate ascent (PSCA) algorithm) converges a
little bit faster than SAGE, in part because it requires about
10% less CPU time per iteration, and in part because it
increasesΦ more each iteration. The differences are modest
since both algorithms converge quite quickly, so there is
limited room remaining for improvement. The new algorithm
is simpler to implement than SAGE as well.

The resulting images are indistinguishablefrom those shown
in [1] since we used the same objective function and both PSCA
and SAGE algorithms are globally convergent.

V. DISCUSSION

The proposed algorithm is based on the “optimization
transfer” principle. Since the original objective functionΦ is
cannot be maximized directly, we instead maximize a sequence
of surrogate functionsφ(λ; λn). The key is to choose surrogate
functions that are easier to maximize thanΦ, but have low
curvature (high curvature surrogate functions lead to slow
convergence rate [4, 9]). Many algorithms in the literature
are based (implicitly or explicitly) on optimization transfer
ideas, include EM, SAGE, grouped coordinate ascent [10],
the convex algorithm [11], and ISRA [12–14]. In almost all
cases, the surrogate functions areseparable, which makes them
trivial to maximize, but also means that they have very high
curvature and hence poor convergence rate. The paraboloidal
surrogate functions that we have proposed here and in [4] are
the first that we are aware of that are nonseparable. Generally
nonseparable functions are harder to maximize. Fortunately, a
notable exception is quadratic surrogate functions, which is the
choice we have made. This choice may be suboptimal; it is
possible that there exist other nonseparable surrogate functions
that are easily maximized but have even lower curvature and
hence yield faster convergence rates.
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Figure 2: Comparison of convergence rate of proposed paraboloidal surrogate coordinate ascent (PSCA) algorithm versus SAGE algorithm.
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