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Abstract methods. Particularly we are interested in the optimum scan
. N . jme fractions under a fixed total scan time constraint, Whic
Pre\_/loys methods _for_ optimizing the scan times for PE_\%EuId result in the smallest variance in a region of intefest
transmission and emission scans under a total scan 1 & final emission image estimate. Previous studies of scan

constraln_t were pased on linear non-stan_stu?al methots e optimization [2] were based on NEC criteria with mulkip
used noise equivalent counts (NEC) criteria. The sc

Aquisiti f emissi dt ission dat d focaeed
times determined by NEC analysis may be suboptimal wh quISTIONS Of miSsion and ransrmission dara and fotase

i tatistical | ructi thods amd &Bnventional reconstructions. The (co)variance apprakions
noniinear statistical 1mage reconstruction methods am 'usdeveloped here might also be useful for other purposes such

Folr s:agstlcgl |ma?_e trecortls_trucnon, the_p:edu?ed;g::&alg as determining the weights in a weighted least-squaresémag
selected regions ot interest1s an appropriate atternahi reconstruction [3]. We analyze both the conventional and

analys_|s. we PTopose a new method for_opt|m|2|ng Fhe r&*at'\étatistical reconstruction cases. We give approximatlytcal
scan times (fract|o_ns) based on analytical aplorOx'm""tmnsformulas for conventional and quadratic penalty atterumati
the covariance .Of 'mages reconstructed by both cc_)nvent_m p reconstructions and compare empirical results with the
and penalized-likelihood methods. We perform S'mUIat'Org'lalytical predictions. Our analysis is based on Poisson

to compare predicted standard c_ie\_/latlons W'Fh EMPINCatistics and mathematical approximations [4].
ones. Results show that for statistical transmission image

. . . . E _ E E T _ T T icaj
reconstruction, the optimal fraction of the scan time dedot  Lety” = [y’ .yy]" andy™ = [y; ...yy]" be emission
to transmission scanning is shorter than for conventior@d Post-injection transmission scan count vectors, and le

transmission smoothing. po=[p1...pp] andd = [A; ... },]" be attenuation map and
emission image pixel value vectors respectively.

|. INTRODUCTION We define the survival probabilities as follows;(y) =

For PET reconstruction, one has to do two sets of scais, ", wherel;(11) represents the line integral along projection
namely transmission and emission scans. One uses th@f the attenuation map. We also define the emission
attenuation correction information obtained from the ferm contamination count rate; (X, u) = kigici(u)pi(X). Herek; is
scan to aid in estimating the radiotracer emission imagen frdhe fraction of emission counts contaminating the transiois
the latter one. Conventional methods of reconstruction a¢gta (the portion in the transmission window for rotating ro
based on linear processing of the transmission and emissRICes)pi(}) represents the geometric projections of the true
data, multiplicative correction of attenuation factors tme €mission image, ande; contains the detector efficiencies and
sinogram domain followed by FBP to reconstruct the emissiéh Scaling factor that accounts for emission scan count rate.
image. This approach ignores Poisson nature of the daf¥e assume that the emission scan measureménend the
Recently, there is growing interest on reconstruct/regmioj transmission scan measuremegis are independent Poisson
methods for attenuation correction in which one reconssru¢neasurements with corresponding means:
the attenuation map and, after possibly some processing in T 7 T
the image domain, this map is reprojected to be used in the v (X)) = (bies(p) + v 4w ) (1)
attenuation correction factors (ACF) computation. The use g = 7" (Eiaz’(ﬂ)Pi(/\)+ T’;E) (2)
of statistical methods for reconstructing attenuation snap
well as emission images is becoming attractive in the médice _ A
research community, especially due to faster computers dHges respectively. li(u) = [Guli = > j=19ij1; and
faster algorithms. In this paper, we reconstruct ACFs usty  pi(A) = >_%_, gi;A; are geometric tomographic projections
conventional and penalized-likelihood reconstruct/oggmt of parametersy and . b;, rf and r’ are blank scan,
(PL) methods for post-injection transmission scans. Feviby, transmission scan randoms and emission scan randoms count
we reconstruct emission images with FBP only. Resolutioates respectively. We assurfig}, {rf}, {¢;}, {rF} and{g;; }
matching is critical in attenuation correction, so we addre known constants throughout this work.

a post-filtering step to statistical reconstructions toldsie

approximately Gaussian point spread functions which resluc II. ACF ESTIMATION

artifacts from point spread function mismatches. This{fittstr
reduces the negative sidelobes from the point spread umofi
penalized-likelihood reconstructions [1].

ééere, 7T and £ are transmission and emission scan

Attenuation correction is a must for quantitatively actera
emission image reconstruction. We define attenuation
correction factors (ACFsY;(p) = ¢"(®) = 1/a;(u). This

In this work, we study the effects of emission ands the multiplicative factor that corrects for the effect§ o
transmission scan time duration on the variance of tlatenuation in the emission data. We consider two different
reconstructed emission image for different reconstractiavays of estimating the ACFs: 1) Conventional smoothing
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method and 2) Reconstruct/reproject penalized-likelth@.)

method. o S N
- . _ pi=z% = zv+%E-zn)+un-n) ()
In the non-statistical conventional method, we estimage th S
emission contamination by: = %+ yE - a), (8)
and consequently,
ki = smooth{k;(y7’ /7" — ") }, 3 Cov{p} ~ D {z)Cov{3}D{z} +D {5} Cov {2} D {31} .
and we estimate the ACFs by reciprocating the survival 9)
probabilities, that isy; = 1/a;, where The ACFs#; are notlinearly related to variables with
. o T known covariances. In the conventional method, =
a; = smooth{ (y /7" — r' — &;)/b:} . (4) 1/a;. In the statistical method; = e(%). These are

both nonlinear functions. Since the covarianceaotan be
The smoothing operation is often used to reduce noise in higind exactly for the conventional method and the covaganc
ACFs. We also use smoothing to reduce noise in the emissioih i can be approximated for the statistical method, we

contamination estimate in (3). can linearize these formulas arourmg and /; to get an
In a statistical reconstruction, one estimates the ACEStimate of the covariance gf This linearization was the
by 4 = €'i™ where i is the attenuation map estimateM€thod used in [6] to estimate the variances of the ACFs.

computed by the reconstruction algorithm. The emissidptt: this linearization is not very accurate for especiatig
contamination estimate (3) is included in the model. THePhventional method, because the functfgm) = 1/x cannot

statistical reconstruction is considered in detail inigecy. be closely approximated by a linear function especially nvhe
the denominator (survival probabilities) is close to zend the

variance of the denominator is high.
[Il. EMISSION IMAGE RECONSTRUCTION 9

For brevity, we consider here the conventional FBP meth%ir
to reconstruct emission images. We define the attenuatfg
emission projections function as

zi(A, ) = pi(X)ag ().

To overcome this problem, we propose an approximation
the probability distribution function of the ACFs. We
ume thaf; are lognormal distributed. A random variable
is lognormal distributed if its logarithm is normally diktuted.

We believe this is a very accurate assumption becgugean
estimate ofe’:(#) and the projections of any random variable

A linear unbiased estimate of this function is (herel;(f)) can be assumed Gaussian due to the Central Limit
Theorem. This provides us extra information about the ACFs.
z; = smooth (yi* /7% — i) /i } . (5) With this assumption, one can compute the mean and variance

of 4;'s directly in terms of mean and variance af in thAe
Then, an estimate of the projectiom$)) can be obtained by: conventional method and in terms of mean and variandg of
in the statistical method.

bi =iz So, for the conventional method, we get:

The emission image is reconstructed by standard FBP method. a4+ o?
We use the ramp filter only because the estingaie already a Yi = T’ (10)
smooth estimate qf;(A). Thus, !

< and ~2 2 \2 .2

A = FBPramp{p:} - o2 = Gt oa)0n (11)

Vi 0728 :
IV. EMISSION COVARIANCE ESTIMATES Even with the lognormality assumption, the covariance

The covariance of the emission image estimate veatormatrix of7 is not easy to compute directly. But, the diagonal of

obtained by the above procedure can be written as follows: the matrix is known. So, we propose this approximation fer th
covariances:

Cov {4} = PCov {5} P, (©) Cov{31.%)) ~ T UCov{aia;}  (12)
06,04;
where the matrixP represents the linear FBP operation with a = 05,05,p(q;, &), (13)

ramp filter. We need to find the covariance of the random vector o ) o

P o= [éi’%]f\;l- The computation of the exact covariance owhere P(ai,aj) _represents the correlation coefficient of the
this expression is computationally intensive and is noirebie,  VECtOra. In matrix form:

Instead, we prefer to evaluate this covariance as a sepaaini Cov {4} ~ D:Cov {a} Dy,

of the covariances of the vectatsand#. For this purpose, we

consider the Taylor series expansiortgf; in the neighborhood Where L, )
of z;%; wherez andy are mean values afand¥ respectively. D, =D {UL} _D { a; + o3, }
Then: o4, ’
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We make sure that the diagonal of the covariance matrix of V. PENALIZED-LIKELIHOOD ATTENUATION
matches the variances we get from the lognormal assumption. RECONSTRUCTION

This formula assumes that the correlation coefficientyag
largely determined by the smoothing operaband is the same
as the correlation coefficient far.

While conventional method of ACF computation has been
used for some time, reconstruct/reproject methods havesgai
some interest recently. In a statistical reconstructtjeot

Plugging in the approximation (9) for and writingz; % method for ACF computation, an attenuation map estimate
a;smootHp;(A*™¢)}, we get the following ji is found from noisy transmission data by maximizing the

i i i i i i T T
Cov {p} ~ DpCov {2} Dy + DrCov {a} Dy, 14y Penalized-likelihood objective functieb(y; y™ ) = L(p;y™ ) —
ov{p) pCov {2} D rCov{a} Dr a4 BR(p), whereL(u,y") is the log-likelihood function ané( )

where , ) is a regularizing roughness penalty function. After estinta
Dg 2p a; + 03, the attenuation mapg:, we estimate the ACFs by®y;, =
a3 el(h) wherel;(1) = [Gf]; is the geometric projection of

the attenuation map estimate If one uses FBP for emission
reconstruction, thert should be smoothed to yield similar
resolution with they [9] in order to reduce resolution mismatch
The mean and covariance 6fcan be found easily from artifacts.
the expression (5) since it is linearly relatedyd. A simple .
analysis yields:z; = smootl'{p'(/\“ue)e—’l(“"“E)} and from A Resolution
had] 2
(5) and (2): Penalized likelihood (PL) or penalized weighted
) 1 , least squares (PWLS) methods are very attractive image
Cov {2} = £ BD {a:} B, (15)  reconstruction methods due to their superb noise reduction
properties. The variance weighting in PWLS method reduces
the variance of the estimates as compared to penalized
unweighted least squares (PULS) or FBP reconstructions,
because it makes use of the statistical information in the
measurements.  However, attenuation maps reconstructed
with PL or PWLS methods have non-uniform resolution [1]
For conventional ACF computation, ignoring the noise iBven with a quadratic penalty. This non-uniform resoluign
the emission contamination estimate, the covariance o&n caused by the variance weighting in PWLS (or PL) method

and
Dr £ DD {smoott{p;(\"™)}} .

where i 2 (i00(p")pi(AT) + rB)/e2, and B is a
smoothing convolution matrix along the radial directiortiodé
projection space. It was suggested in [5] that angular shiogt
is not desirable in attenuation correction, so we smooti ionl
radial direction.

be found from (4) and (1). and hence does not exist in a PULS reconstruction. Due to this
X 1 . non-uniform resolution, ACF computation by PL method from
Cov {a} = T—TBD {si} B”, (16) a real transmission scan causes resolution mismatch betwee

N the emission data and reconstructed ACFs. This mismatch
wheres; = (bjoi(p™) + r + &;)/b?. Here, B is the reveals itself as artifacts in the final reconstructed eimiss
same smoothing matrix as in (15). The same operf#tos image.

used to obtain both and & to avoid artifacts from resolution
mismatch [7, 8]. We used Gaussian smoothing as suggestegei
[7] which avoids any artifacts in the reconstructed imagke T
mean of emission contamination can be determined from (3)
k=B [kieiai(p“ue)pi(A“ue)]fil. The variance ofy; can be
found from (16) as

Fessler’s certainty based penalty [9] yields more uniform
Lolution in terms of the average FWHM of the point spread
function over the image. But, it still has non-uniform rag@n
ifithat the psfis not circularly symmetric but the level counis
look like ellipses whose orientation are image dependedt an
space-variant. Stayman and Fessler have recently progosed
ol = Si/TTZBizk~ new m(_)dification to the_quaqlratic penalt)_/ [10] WhiCh yields

' B more circularly symmetric uniform resolution propertiédle

used this modification in our reconstructions. This modifara
Using (4), one can find the mean valuesiads makes the resolution properties of the PL method close toPUL
& = Bla(p™e)) Y (17) method. Quadratic PULS m_ethod was shown to be_ essentially
equivalent to FBP method with the following constrainedstea

i=1"
The variance of the sum over a region of interest in trguares (CLS) filter defined in spatial frequency domain by
emission image can be found from (6), (14), (15) and (16) as(€quation (50) in [9])

. . 1 g 1 ¢ inc(k i
o) e (= b o S
sinc(ku)” + cfu>

with +& = Zf\;l g:(wf)? andv™ = Ef\;l s;(w§)?, and _ _ _

whereu is a vector of ones in the region of interest and zerd¥éhereu denotes spatial frequency, k is the ratio of the detector

elsewhere. We define the vectors strip width to the pixel size of the system model, ant a
constant dependent on system geometry. This CLS filter has

A A
w" = B'DgP'u, w" = B'DyP'u. high negative sidelobes in the space domain. The filters that
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smooth the ACFs and emission data have to be matched. So.dgbémate of the attenuation map We again ignore the noise in
emission data should be blurred with the same filter (19), Buhe emission contamination estimate and use the mean \alue f
due to high negative sidelobes of filter in (19), after diaigli it in our approximations. The formula yields:

the appropriately blurred emission data to computed satviv } .

prob_abilities fr(_)m reconstructi_ons, we get artifacts etqdl;/_ Cov {i} ~ LH‘lG’D (bi6_11)2(bf6_11~ +75) GH-',
for higher blurring amounts (highgts) around the boundaries 7T (bje=li 4+ 71)2

of the image. So, we conclude that the results in [7] does only

hold for Gaussian smoothing. where
To overcome this problem, we first reconstruct a higher § (f.T)(b»e’fm + 7
resolution image using a small@rvalue than desired and then H = G'D {bie"l (1 - Z_i — 22 ) } G+ BR.
we filter the projections with the following filter: (bie™h +77)
Fo(u; 8)Fy(u; w) Here R is the Hessian of the penalty function and includes the

Fy(u) = | Fp(u; B)|2 + 0.1(1 — cos(2mu))

yu€[0,0.5], modified penalty weights [10] angf = I + &;.

where F,(u;w) is the desired Gaussian filter with desired In_ this case, the variance of the sum over a region can be
FWHM w. Now. the emission data is also filtered Wiﬂpredlcted with a formula similar to (18). The emission pdrt o

the Gaussian shaped filté#, (u; w). This approach reducesthe formulais nows" = B'D {61’} P’y andg; remains same.
artifacts and yields acceptable images. The ACF computatidhe transmission part changes a lot due to statistical rdetho

in this case is done as follows: termw™ should be changed to:

po= argznaxq)(u;yT), w' = GH™'G'B,D {EieT’}P'u,

I = ByGj, (20) . t

’ b1 )2 (e~ 4 7T
¥ = €, and thes; term should bes; = (bie™) (ve — Rkl ).
(et

where B is the convolution matrix corresponding 0 (u) The most computationally intensive part in this computatio
above. is the part whereH ~'v* should be computed fop* =

) o G'B,D {Eiel’}P/u. This operation can be performed by
B. Covariance Approximations solving the equatiorffz = »* using iterative methods such
The covariance formula in (9) is still valid in PL as conjugate gradient. Also, we assume the meafy f'smow,

transmission reconstruction. We use the following firsteordy = e':.

Taylor series expansion for the ACFs: These variance predictions are useful, because they do

R i T Lo 7 not require hundreds of empirical reconstructions of data
y=cetrmei+ei(l— 1), (21) . .

[4]. However, they require knowing the true parameters and
wherel = B,Gji is the mean projection vector whefe = noiseless sinograms. For real data, these are not knowanbut
argg%)axq)(ﬂ;gT) is the image reconstructed with noiselessan still get a good approximation of variances by replatieg

w2

data.j: is a very good approximation for the mearyd#]. Note true parameters by their noisy counterparts [4].

that, we do not use the lognormality assumption here, becaus Finally, the optimal time fraction for the emission scan can
we believe that the above approximation is accurate enongh &€ found by minimizing the variance in (18) with respect te th
lognormal assumption leads to much more computation. Fréfnission scan time when total scan time is fixed. For the QPL

(21) and (20), method, the simple analysis yields
Cov {3} =D {" } BsGCov {1} G'ByD {¢}. B et = VOET
Topt =T UE — UT .

To find the covariance of the implicitly defined estimagome _ )
use the formulas introduced in [4]. Note that for the conventional method, the above formula is

i . ) invalid because the™ term is not independent from the scan
The general form of penalized-likelihood estimates is\a quration-T

ji = argmax®(u;yT), where p is the parameter vector
1

and yT is the measurement vector. This defines an implicit VI. RESULTS
function i = h(y"). A first order Taylor expansion of the
equationV®(u; yT) = 0 around(jz, y7) yields the following
approximation [4]:

We have done a series of simulations to test the proposed
variance predictions and to find the optimal scan times under
a total scan time constraint. We used two 2-D images

Cov {ji} ~ QCov{yT} Q. (22) corresponding to atte_znu_ation map a_nd emissi_on image to
. generate noisy transmission and emission data with 150800 a
whereQ = [-V2°®(i,y")]  V'®(ji,y"). We use this 50000 counts per minute respectively. The true images are

formula to evaluate the covariance of the penalized-lii@dd shown in Figure 1. The transmission scan had 5% randoms
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and an emission contamination of 5%. Emission scan had 10%
randoms. Randoms rates were assumed to be constant. The
total scan time was 20 minutes. To obtain empirical standard
deviations, 300 realizations were generated for each sean t
distribution. The emission images were reconstructed with
FBP with a smoothing filter that yields about 9 mm FWHM
resolution in the image domain. ACFs were computed using
the conventional and quadratic penalized-likelihoodistiatl
methods. The resolutions for the ACFs were matched for
these two methods. The standard deviations of the sums over
the heart region in the reconstructed emission images were
found empirically and predicted analytically using theided
formulas. The results are shown in Figure 2 as a plot of
standard deviation estimates versus emission scan tictéoira Figure 2: Standard deviation of the sum over the heart reggtimates
The statistical method not only reduces the overall vagan/ersus emissi(_)n scan time fraction for conventional antisstal
but also yields a larger optimum emission scan time fractidi-F computations.
(about 40%) as compared to the conventional method (about

30%). The standard deviationis reduced by about 15-20%&in th VlIl. REFERENCES
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