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Abstract
The ordered subsets EM (OSEM) algorithm has enjoyed

considerable interest for emission image reconstruction due
to its acceleration of the original EM algorithm and ease of
programming. The transmission EM reconstruction algorithm
converges very slowly and is not used in practice, particularly
because there are faster simultaneous update algorithms that
converge much faster. We introduce such an algorithm called
separable paraboloidal surrogates (SPS) in this paper which
is also monotonic even with nonzero background counts.
We demonstrate that the ordered subsets method can also
be applied to the new algorithm to accelerate “convergence”
for the transmission tomography problem, albeit with similar
sacrifice of global convergence properties as OSEM. We
implemented and evaluated this ordered subsets transmission
(OSTR) algorithm. The results indicate that the OSTR
algorithm speeds up the increase in the objective function
by roughly the number of subsets in the early iterates when
compared to the ordinary SPS algorithm. We compute mean
square errors and segmentation errors for different methods and
show that OSTR method is superior to OSEM applied to the
logarithm of the transmission data. But, penalized-likelihood
reconstructions yield the best quality images among all other
methods tested.

I. I NTRODUCTION

Attenuation is an important factor that should be corrected
for in emission computed tomography. In modern systems,
transmission scans are performed in addition to emission scans
to correct for the effects of attenuation. Statistical methods
can be used to reconstruct attenuation maps from these scans
which in turn can be used in emission image reconstructions
as attenuation correction factors (ACFs) to yield quantitatively
accurate images.

Algorithms exist for maximum likelihood (ML) and
maximum penalized likelihood (PL) transmission image
reconstruction problems. Most of the recent ones [1, 2] are
based on direct maximization of the objective function rather
than the famous expectation maximization (EM) algorithm
[3] due to the fact that EM algorithm for transmission case
converges very slowly [4].

Recently, ordered subsets EM (OSEM) [5] for the emission
problem has been used a lot in emission image reconstruction.
This algorithm is frequently used because of the following
reasons.� OSEM provides order-of-magnitude acceleration over EM

in ML problems.

� The reconstructed images look good after only a few
iterations.� OSEM is implemented by slightly modifying the well-
known and well-established EM algorithm.� OSEM is easily implemented with any type of system
model.

However, although the images seem to look good, the
resolution and variance properties of OSEM are unclear. In
addition it does not converge and may cycle. Due to its
popularity, OSEM for emission problem was even applied to
transmission data after taking its logarithm. In the results
section, we show that this approach yields lower quality images
than the ordered subsets transmission (OSTR) algorithm we
introduce in this paper.

Mangloset al. [6] applied the ordered subsets idea to the
transmission EM method. Although ordered subsets accelerate
convergence of the original transmission EM algorithm, it is
still affected by the slow convergence of it. The separable
praboloidal surrogates (SPS) algorithm we base our OSTR
algorithm is much faster than the transmission EM algorithm.

The ordered subsets method can be applied to any algorithm
which involves a sum over sinogram indices. The sum over
all the sinogram indices are replaced by a sum over a subset
of the data and an ordered subsets version of the algorithm is
obtained. However, it is best to apply this idea to algorithms
which update the parameters simultaneously at each iteration
rather than greedy sequential update algorithms. This is due to
the fact that greedy algorithms such as coordinate ascent tend
to update high frequencies faster [1]. When only a subset of the
data is used as in ordered subsets, there is no point in making
high frequency details converge.

In this paper, we apply the ordered subsets idea
to a separable paraboloidal surrogates (SPS) algorithm.
Paraboloidal surrogate [7] is a quadratic function that is
designed to lie below the log-likelihood. Using concavity
[2], we get a separable quadratic function that lies below
this paraboloid. This separable surrogate function can be
maximized by a simple simultaneous update. The SPS
algorithm is intrinsically monotonic. However, the ordered
subsets version is not guaranteed to be monotonic and does not
converge for number of subsets greater than one.

In the rest of the paper, we first introduce the problem
and the OSTR algorithm for general penalized-likelihood
(PL) objective. Then, we present results on real PET
transmission data with maximum likelihood and (ML) and PL
reconstructions. We analyze the algorithms in terms of their
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mean squared error. We also perform hard segmentation on
the reconstructed images to analyze their tissue classification
performance.

II. THE PROBLEM

For transmission scan measurements, it is realistic to assume
the following model:� � � Poisson� 	 � 
 � � 
 � � � � � � � � � � � � � � � � � �
where � is the number of measurements,� � is the average
linear attenuation coefficient in voxel� for � � � � � � � � � ,
and � denotes the number of voxels. The notation� 
 � � � �� ��  � ! � � � � represents the line integral of the attenuation map� , and
 � � ! � � � is the� " � system matrix. We assume that� 	 � � � � � � � and� ! � � � are known nonnegative constants, where� �
is the mean number of background events,	 � is the blank scan
count and� � represents the number of coincident transmission
events counted by the� # $ detector pair.

The log-likelihood function for the independent
transmission data is:% & � ' � ()�  � * � & � 
 � � � ' �
where* � & + ' � � � , - . & 	 � 
 � / � � � ' 0 & 	 � 
 � / � � � ' � ignoring the
constant terms. Directly maximizing

% & � ' (ML method) results
in a very noisy estimate1� . Segmentation of the attenuation map
is commonly performed to reduce noise afterwards. Penalized-
likelihood (PL) (or MAP) methods regularize the problem and
reduce the noise by adding a roughness penalty to the objective
function as follows:1� � arg2 3 4� 5 6 7 & � ' � 7 & � ' � % & � ' 0 8 9 & � ' � (1)

The roughness penalty9 is of this form:9 & � ' � �: �)�  � ); < = > ? � ; @ & � � 0 � ; ' � (2)

where@ penalizes neighboring pixel differences.

In the following discussion, we use the PL formulation to
derive the new algorithm. If one wants to implement the ML
method, setting8 � A should yield the ML estimator.

III. T HE ALGORITHM

A. The Likelihood Part
We presented the paraboloidal surrogates algorithm for

transmission tomography previously [7, 8]. We first find a
one-dimensional surrogate parabolaB � & + C + D� ' that is tangent to
the marginal log-likelihood function* � & + ' at the current iterate+ D� � � 
 � D � � and lies below it for all

+ E A . Then, we sum
up these parabolas to obtain an overall paraboloidal surrogate
function for the log-likelihood as follows:F � & � C � D ' G� ()�  � B � & � 
 � � � C + D� ' H % & � ' � I � J A �

whereB � & + C + D� ' G� * � & + D� ' � K* � & + D� ' & + 0 + D� ' � � L : M � & + D� ' & + 0 + D� ' � �
The optimum curvature that provides fastest convergence rate
while preserving monotonicity was shown to be [7]

M � & + D� ' � NOOPOOQ
R : * � & A ' 0 * � & + D� ' � K* � & + D� ' & + D� '& + D� ' � S T � + D� E A �U V* � & A ' W T � + D� � A �

This new objective
F � & � C � D ' and each B � & + C + D� ' are

naturally concave. Previously, we used coordinate ascent to
maximize this objective function [7]. This approach leads to a
very fast and monotonicalgorithm. However, the computational
advantages only exist if the system matrix is precomputed and
column accessible [9]1. However, this problem does not exist
for algorithms that update all the parameters simultaneously.
Simultaneous update algorithms are parallelizable whereas
sequential updates are not. To maximize this new objective
by simultaneously updating all the parameters, we can use the
additive concavity trick employed in [2] which makes use of
DePierro’s arguments about concave functions [10, 11]. These
arguments provide a separable surrogate function

F � & � C � D ' forF � & � C � D ' as follows:F � & � C � D ' � ()�  � B � XY �)�  � ! � �Z � [ Z � & � � 0 � D� ' � � 
 � D � � \ ]̂
J ()�  � �)�  � ! � �Z � B � _ Z � & � � 0 � D� ' � � 
 � D � � C + D� `
G� F � & � C � D ' � I � a bc (3)

where Z � � � �;  � ! � ; is the projection of an image of all
ones. Note that the terms! � � L Z � sum up to unity (over� ) and
the inequality follows from the definition of concavity. The
function

F � & � C � D ' is now separable in� and quadratic, so that
the exact maximization is reduced to maximization of� 1D
functions each of which depend on one pixel value� � only.

B. The Penalty Part
Since the maximum likelihood problem is ill-posed (i.e.

small changes in data result in big changes in the estimates),
some kind of regularization is necessary. The discussion in
section A provided separable surrogate functions for the log-
likelihood function. A similar separable surrogate is needed for
the penalty part9 & � ' for a simultaneous update.

We exploit the convexity of the potential function@ & d '
to obtain the surrogate. For completeness, we repeat the
arguments in [11, 12]:@ & � � 0 � ; ' � @ e �: [ : � � 0 � D� 0 � D; \

1For real 3D problems system matrix is huge, so precomputation
can be impractical.
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� �: [ 0 : � ; � � D� � � D; \ f
H 1@ & � C � D ' G� �: @ & : � � 0 � D� 0 � D; '� �: @ & : � ; 0 � D� 0 � D; ' (4)

Using this inequality, one gets the following separable
surrogate function:g & � C � D ' G� �)�  � ); < = > ? � ; 1@ & � C � D ' J 9 & � ' � I � a bc (5)

C. The SPS Algorithm
We designed separable surrogate functions for both the

likelihood and the penalty parts in the preceding sections.By
combining those, we define the global surrogate functionh & � C � D ' G� F � & � C � D ' 0 8 g & � C � D '
which satisfies

h & � C � D ' H % & � ' 0 8 9 & � ' � 7 & � ' � I � J A
and is tangent to7 & � ' at current iterate� D

. We maximize
(or increase) the function

h & � C � D ' at each iteration and repeat
the procedure iteratively. We call this algorithm separable
paraboloidal surrogates (SPS) algorithm. One can show [7]
that increasing the surrogate function

h & � C � D ' also increases
the original objective function7 & � ' . Hence, this algorithm is
intrinsically monotonic. The maximization of

h & � C � D ' is easy.
Due to the additive separability, the update for each parameter
only involves the parameter itself. When a quadratic penalty is
used,i.e. @ & d ' � d � L :

, the maximization can be done exactly in
a single step via Newton’s algorithm as follows:� D T � � � D � i � � j k 7 & � D ' (6)

wherei is a� " � diagonal matrix with diagonal entriesi � � � l D� � : 8 ); ? � ; � for � � � � � � � �
The factor

:
in the denominator comes from the separable

surrogate
g & � C � D ' in (5). The denominator termsl D� are:l D� � 0 ()�  � ! � � Z � M � & + D� ' � (7)

However, for transmission tomography, it is advantageous to
use edge-preserving nonquadratic penalties to get images with
sharper edges. An example for nonquadratic penalties is [13]:@ & d ' � m � � n d L m n 0 , - . & � � n d L m n ' � �
where m is a twiddle factor. We used this penalty in our PL
reconstruction results.

In the nonquadratic penalty case, exact maximization is not
easy, but one can monotonically increase the surrogate objective
by doing a few sub-iterations of the following type.1� � o � 1� � � pp � > h & 1� C � D 'l D� � : 8 �; < = > ? � ; q r & 1� � 0 � D; ' � (8)

whereq r & d ' � K@ & d ' L d
. The detailed explanation of theq r & d '

function can be found in [7, 14]. The partial derivative of the
surrogate

h
with respect to� � can be found as:ss � � h & 1� C � D ' � ()�  � ! � � K* � & + D� ' 0 l D� & 1� � 0 � D '0 8 ); < = > ? � ; K@ & 1� � 0 � D ' � (9)

where K* � & + ' � e � �	 � 
 � / � � � 0 � f 	 � 
 � / .
Next, we apply the ordered subsets idea to the simultaneous

update algorithm developed above.

D. Ordered Subsets
Ordered subsets idea can be used with any algorithm as long

as the algorithm involves a sum over sinogram indices. The SPS
algorithm introduced above also contains sums over sinogram
indices in computing the denominatorl D� terms (7) and the
gradient terms pp � > h

(9). We apply the ordered subsets idea
to this algorithm.

Ordered subsets methods group projection data into an
ordered sequence of blocks and processes each block at
once. These blocks are usually chosen so that the projections
within one block correspond to projections of the image with
downsampled projection angles.

Let t be the number of subsets chosen in the projection
domain. Let

g � � � � � � g u
denote the subsets in the order

selected. At stepv the following objective function
corresponding to the subset

g w
should be maximized (or

increased):

7 w & � C � ' � t x )� < y z * � & � 
 � � � ' { 0 8 9 & � ' �
The scaling of the log-likelihood function is necessary in order
that the effect of8 value is independent of the number of
subsets. One iteration is completed when the algorithm goes
through all the projections by going through all the subsets.
The modification of the SPS algorithm to incorporate ordered
subsets idea is relatively easy. We call the resulting algorithm
ordered subsets transmission (OSTR) algorithm. The outline
of the algorithm is given in Table 1. The maximization step is
similar to (8) but the curvature and gradient terms are computed
using just a subset of the data.

The OSTR algorithm reduces to the SPS algorithm whent � � . Since the projections and backprojections are
performed for only the elements of a single block, processing of
each block in an OSTR algorithm witht subsets (OSTR-M)
roughly takes� L t of time that it would take for one iteration
of the SPS algorithm. For PL problem, actually it would take a
little more than� L t of the time since the CPU time required for
computing the gradient and curvatures of the penalty surrogate
do not change. Yet, one hopes that processing of one block
increases the objective function as much as one iteration of
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for each iteration| } ~ � � � � � niter
for each subset m=1,. . . ,M�� � } �)� � � � � � �� � � �� � } e � �� � � � �� � � � � � ~ f � � � � �� � � � � � � �� � � � } ��

for � } ~ � � � � � � �� � }   )� ¡ ¢ z � � � �� � �£ � } �   )� ¡ ¢ z � � � ¤ � ¥ � ¦ �� � §
for a couple sub-iterations�� � ¨ } © �� � � �� � � £ � ¦ �� � � � � � �� § � ª � « ¬ � « �­ ¦ �� � � � � � �« §£ � � ® ª � « ¬ � « ¯ ° ¦ �� � � � � � �« § ± ²
end

end
end

end

Table 1
OSTR algorithm outline

the original algorithm. That is, the objective increase fort
iterations of OSTR-1 should be close to that increase for one
full iteration of OSTR-M. This intuition is verified in the initial
iterations and for up to a reasonable number of subsets in the
following results section.

IV. RESULTS

We acquired a 15-hour blank scan (	 � ’s) and a 12-min
transmission scan data (� � ’s) using a Siemens/CTI ECAT
EXACT 921 PET scanner with rotating rod sources for
transmission scans. The phantom used was an anthropomorphic
thorax phantom (Data Spectrum, Chapel Hill, NC). The
projection space was 160 radial bins and 192 angles, and the
reconstructed images were� : ³ " � : ³

with 4.5 mm. pixels. The
system matrix! � � was computed by using 6 mm. wide strip
integrals with 3 mm. spacing, which roughly approximates the
system geometry.

A. Reconstructions
The attenuation map is reconstructed for both ML and PL

methods using OSTR algorithm with 1, 2, 4, 8, 16 and 32
subsets. Figure 1 shows objective function increase for the
ML reconstructions initialized with a uniform image. The
order-of-magnitude acceleration can be seen in this plot for
initial iterations. One iteration of ML-OSTR-16 increasesthe
objective almost as much as 16 iterations of ML-OSTR-1 and
4 iterations of ML-OSTR-4 for initial iterations. Although,
whent E � , the algorithm does not converge to the true ML
solution, in practice one would only do a few iterations using
ML-OSTR-M. In the ML problem, exact maximization is not
desired since the maximizer image is exteremely noisy.

Figure 2 shows objective function increase versus iterations
for PL reconstructions (8 � : � 6 and nonquadratic Lange’s

penalty). The iterations are initialized with an FBP image.
There is a speed-up in using more subsets, but as the number of
subsets increase, the order-of-magnitude acceleration does not
hold. For example, one iteration of PL-OSTR-16 increases the
objective more than one iteration of PL-OSTR-32 (not shown).
So, number of subsets greater than 16 did not seem to improve
convergence for this configuration and data. For comparison,
the image is also reconstructed with the paraboloidal surrogates
coordinate ascent (PL-PSCA) method which is a fast monotonic
algorithm [7]. The CPU times for one iteration of PL-PSCA and
one iteration of PL-OSTR-1 are similar. It is clearly seen that
PL-OSTR-M algorithms do not converge to the true maximum
whent E � . To use the speed-up property and converge at the
end, one can sequentially decrease the number of subsets with
each iteration. One such run is shown in the same figure where
we start with 16 subsets and gradually decrease to 1 after which
the algorithm should converge.

B. Mean Squared and Segmentation Errors

The reconstructions were done using real data. We wished
to find mean squared errors and segmentation errors on the
reconstructed images. The real image of course was not known
to us. So, we acquired a long 14 hour scan of the thorax
phantom which was almost noise free. We reconstructed the
data with FBP with a sharp filter. Then, we performed a 4 level
hard thresholding segmentation on this image with attenuation
map parameters assumed to be average standard attenuation
map values for air, soft tissue, lungs and bone. We obtained
regions for each attenuation level. Then, we eroded these
regions with a 5x5 window to get more conservative estimates
of the regions and calculated the average value of the FBP image
in these regions. These new values were assumed to be the
true attenuation coefficient levels for the image (air = 0, lungs
= 0.035, soft tissue = 0.093, bone = 0.164 cm� �

). Then, the
FBP image was segmented by thresholding using new levels
to obtain the “true” phantom image. Figure 3 shows the true
phantom image.

We found normalized mean squared errors (NMSE) for
each method using the true phantom image. The reconstructed
images were also hard-segmented with the thresholds found
above and we evaluated their segmentation performance by
counting the number of misclassified pixels.

For this part, we also applied the emission ML-OSEM
algorithm to logarithm of the transmission data0 + ´ µ & & � � 0� � ' L 	 � . Although, there is no theoretical basis for this approach,
it is nevertheless used. The results show that this approachis
inferior to the ML-OSTR method and that it should be avoided.

Figure 4 shows NMSE versus iterations for ML-OSTR, ML-
OSEM, PL-OSTR and PL-PSCA methods. Figure 5 shows
the percentage of segmentation errors versus iterations for the
same methods. These results show that ML-OSTR algorithms
get noisy after a certain number of iterations and that the
iterations should be stopped before convergence. For example,
it appears that the ML-OSTR-16 algorithm should be stopped at
the third iteration for lowest NMSE. ML-OSEM applied to the
logarithm of the transmission data is inferior in quality toall
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other methods we tried. PL reconstructions have better quality
than ML reconstructions in terms of both lower mean squared
errors and lower segmentation errors. Although, PL-OSTR-
16 algorithm does not reach the true objective maximum, it
appears to be comparable to PL-PSCA algorithm in terms of
mean squared error and segmentation performance.

Figure 6 shows reconstructed images and their
segmentations for FBP, ML-OSTR, ML-OSEM, PL-OSTR
and PL-PSCA methods. Each image is the best among their
kind. For example, to obtain the FBP image, we performed 20
different FBPs with Hanning windows with different cutoff
frequencies and picked the one with lowest NMSE. ML-OSTR
image is obtained by 16 subsets at 3 iterations. ML-OSEM
image is obtained by 8 subsets at 2 iterations. PL images are
the images at 10# $ iterations of their corresponding algorithms.
The bars show the levels of NMSE and segmentation errors.
We conclude that PL reconstruction images are much better
than the images obtained using other methods.

V. CONCLUSION

We introduced a new ordered subsets algorithm for ML and
PL image reconstruction in transmission tomography. Although
the algorithm does not converge for number of subsets greater
than one, it seems to rapidly increase the objective function
value in the early iterations. The images reconstructed from
real PET data with ML method are worse in quality than images
reconstructed with PL method. However, ML-OSTR is superior
to ML-OSEM applied to the logarithm of transmission data for
this particular data. The new algorithm is easy to implement
with any type of system model and does not require column
access to the system matrix unlike sequential update algorithms
such as coordinate ascent. It is also easily parallelizable.

We conclude that if an approximate maximum is acceptable
due to practical time and programming constraints, then the
OSTR algorithm offers faster convergence than prior methods.
However, for guaranteed global convergence to the maximum,
other methods must be used.
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Figure 3: Image obtained by hard segmentation of the FBP image
reconstructed from the 14-hour scan assumed as the true image.
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