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Abstract e The reconstructed images look good after only a few

The ordered subsets EM (OSEM) algorithm has enjoyed lterations.
considerable in_terest for emi_ssion image reconstructioe d o OSEM is implemented by slightly modifying the well-
to its acceleration of the original EM algorithm and ease of  ynown and well-established EM algorithm.
programming. The transmission EM reconstruction algarith
converges very slowly and is not used in practice, partigula * OSEM is easily implemented with any type of system
because there are faster simultaneous update algoritrahs th  model.
converge much faster. We introduce such an algorithm called
separable paraboloidal surrogates (SPS) in this paperhwhic However, although the images seem to look good, the
is also monotonic even with nonzero background count§solution and variance properties of OSEM are unclear. In
We demonstrate that the ordered subsets method can &@dgition it does not converge and may cycle. Due to its
be applied to the new algorithm to accelerate “convergencB@pularity, OSEM for emission problem was even applied to
for the transmission tomography problem, albeit with simil transmission data after taking its logarithm. In the result
sacrifice of global convergence properties as OSEM. V@&ction, we show that this approach yields lower qualitygesa
implemented and evaluated this ordered subsets transmisdhan the ordered subsets transmission (OSTR) algorithm we
(OSTR) algorithm. The results indicate that the OSTHtroduce in this paper.

algorithm speeds up the increase in the objective function Mangloset al. [6] applied the ordered subsets idea to the
by roughly the number of subsets in the early iterates whemnsmission EM method. Although ordered subsets actelera
compared to the ordinary SPS algorithm. We compute measnvergence of the original transmission EM algorithm sit i

square errors and segmentation errors for different metaod  still affected by the slow convergence of it. The separable
show that OSTR method is superior to OSEM applied to thgaboloidal surrogates (SPS) algorithm we base our OSTR

logarithm of the transmission data. But, penalized-liketid algorithm is much faster than the transmission EM algorithm
reconstructions yield the best quality images among akoth

methods tested. The ordered subsets method can be applied to any algorithm

which involves a sum over sinogram indices. The sum over
I. INTRODUCTION all the sinogram indices are replaced by a sum over a subset
Attenuation is an important factor that should be correctét :h_e dgtaHand an o_rtd_erid stutbsets ;/e;il_on_ dOf tt:e allgor;rr:m IS
for in emission computed tomography. In modern system%h_a'r?e .d tOV\tlﬁver’ 1S tes o_aplriy IS II eat 0 aﬁo_[: T
transmission scans are performed in addition to emissianssc ¢ Updale the parameters simuitaneously at each neratl

to correct for the effects of attenuation. Statistical roelh rather than greedy sequential update algorithms. Thisestalu

can be used to reconstruct attenuation maps from these ségr?sfad that greedy algorithms such as coordinate ascadt te

which in turn can be used in emission image reconstructioﬁ)sulofJlate high fr_equenmes faster [1]. When onlyas_ub_sdfte)ft_
as attenuation correction factors (ACFs) to yield quatitied gta is used as in o_rdered subsets, there is no point in making
accurate images. high frequency details converge.

In this paper, we apply the ordered subsets idea

maﬁ\ilriirrlrghmanl)iqzset d f?irkerlriﬁ))( (l)rgur(rIIDLl)lk?:!‘w:S()rgis(sl?/(ljla) izr?a(\j to a separable paraboloidal surrogates (SPS) algorithm.
P 9Baraboloidal surrogate [7] is a quadratic function that is

reconstruction problems. Most of the recent ones [1, 2] arg . ) o . i
. L L . designed to lie below the log-likelihood. Using concavity

based on direct maximization of the objective function eath : : :
) S .. [2], we get a separable quadratic function that lies below
than the famous expectation maximization (EM) algorithn:

[3] due to the fact that EM algorithm for transmission case IS _pa_lrabolmd. T_h|s sepgrable surrogate function can be
converges very slowly [4]. maximized by a simple simultaneous update. The SPS

~algorithm is intrinsically monotonic. However, the ordére
Recently, ordered subsets EM (OSEM) [5] for the emissiofibsets version is not guaranteed to be monotonic and dbes no

problem has been used a lot in emission image reconstructiednverge for number of subsets greater than one.
This algorithm is frequently used because of the following

In the rest of the paper, we first introduce the problem
reasons.

and the OSTR algorithm for general penalized-likelihood

(PL) objective. Then, we present results on real PET

e OSEM provides order-of-magnitude acceleration over EMansmission data with maximum likelihood and (ML) and PL
in ML problems. reconstructions. We analyze the algorithms in terms ofrthei
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mean squared error. We also perform hard segmentationweinere

the reconstructed images to analyze their tissue claggifica

performance.

[I. THE PROBLEM

Gl 7) S ha(E) + ha(IF)(1 = 1) + 1/2¢,(17) (1 = )7

The optimum curvature that provides fastest convergenee ra
while preserving monotonicity was shown to be [7]

For transmission scan measurements, itis realistic tar@ssu

the following model: l hi(0) — hi(17) + ﬁi(l?)(l?)
2 T3 , >0,
yiNPOiSSOI{bie_[A“]z+ri}, i=1,...,N, () = ) () +
where N is the number of measurements; is the average [hl(o)] +’ =0
linear attenuation coefficient in voxel for j = 1,...,p,
and p denotes the number of voxels. The notat[ety], = This new objective Q:(u; ) and eachg;(1;1}) are

E§:1 a;j i represents the line integral of the attenuation mapaturally concave. Previously, we used coordinate aseent t
p, andA = {a;;} istheN x p system matrix. We assume thatmaximize this objective function [7]. This approach leadst
{b;}, {r;} and{a;; } are known nonnegative constants, where very fast and monotonic algorithm. However, the computetio
is the mean number of background evenjss the blank scan advantages only exist if the system matrix is precomputed an
count andy; represents the number of coincident transmissi@®lumn accessible [9). However, this problem does not exist
events counted by th&” detector pair. for algorithms that update all the parameters simultarigous
The log-likelihood function for the independents'multa’.1eous update algorithms are paralle_llzable W!sere_za
transmission data is: sequential updates are not. To maximize this new objective
by simultaneously updating all the parameters, we can wese th
additive concavity trick employed in [2] which makes use of
DePierro’s arguments about concave functions [10, 11]s&he
arguments provide a separable surrogate funcig(p; ") for
whereh; (1) = y;log(bie™" + ;) — (bie™" + r;), ignoring the Q1 (; u™) as follows:
constant terms. Directly maximizing(x) (ML method) results
in a very noisy estimatg. Segmentation of the attenuation map
is commonly performed to reduce noise afterwards. Pertlize@1 (1 #7)
likelihood (PL) (or MAP) methods regularize the problem and =1 =l
reduce the noise by adding a roughness penalty to the olgecti
function as follows:

N

L) =Y hi([Anl,),
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i=1j=1
fi = argmax ®(p), ®(p) = L(p) — BR(p). @) A
>0 = Qpp"), VpeER 3)
The roughness penalfy is of this form: wherey; = >7_, a;;, is the projection of an image of all
1& ones. Note that the terms; /7, sum up to unity (oveyj) and
R(p) = B} Z Z wirh(pj — pir), () the inequality follows from the definition of concavity. The
J=1keEN; function@Q2(u; 4™) is now separable ifi and quadratic, so that

the exact maximization is reduced to maximizationpoiD

_ . . . functions each of which depend on one pixel vgluenly.
In the following discussion, we use the PL formulation to P P glenly

derive the new algorithm. If one wants to implement the Mig The Penalty Part
method, setting? = 0 should yield the ML estimator. '

wherey penalizes neighboring pixel differences.

Since the maximum likelihood problem is ill-posede(
. THE ALGORITHM small changes in data result in big changes in the estimates)
some kind of regularization is necessary. The discussion in
section A provided separable surrogate functions for tlge lo

A. TheLikelihood Part S _ P .
) ) likelihood function. A similar separable surrogate is reskébr
We presented the paraboloidal surrogates algorithm fgy, penalty par(y) for a simultaneous update.
transmission tomography previously [7, 8]. We first find a

one-dimensional surrogate parabelél; i) that is tangent to Ve exploit the convexity of the potential function(t)

the marginal log-likelihood functioh;(1) at the current iterate 0 obtain the surrogate. For completeness, we repeat the
I* = [Ap"], and lies below it for all > 0. Then, we sum arguments in[11, 12]:

up these parabolas to obtain an overall paraboloidal sateog

1
function for the log-likelihood as follows: Y —pe) = <§ (25 — pff — pi]

For real 3D problems system matrix is huge, so precomputatio

N
n A n
Qs ™) =Y ail[Ap]; 5 1) < L(p), Y > 0, . :
et can be impractical.
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wherew, (1) = v(t)/t. The detailed explanation of the (t)

1
—[-2 n n ; ) . o
+2 [ et g “k]) function can be found in [7, 14]. The partial derivative oéth

- NN non surrogatep with respect tqu; can be found as:
< Umu") = Se@us — i — ) !
1 G n n 6 ~ al 7 ~
+5 ¥ — 1y — i) (4) P (™) = Y aghi(f) = dF (ji; — p")
J i=1
Using this |_neguallty, one gets the following separable —3 Z w],kd'}(ﬂj — ), (9)
surrogate function: kEN;
P
ny & 7 n
S(uip™) =303 wiph(ps p") > R(p), Ve R (5) o vi o\
, whereh;(I) = | ——— — 1] bje™".
J=1keN; bl.e—l_+_rl,
Next, we apply the ordered subsets idea to the simultaneous
C. The SPSAlgorithm update algorithm developed above.

We designed separable surrogate functions for both tfe Ordered Subsets
likelihood and the penalty parts in the preceding sectids.

combining those, we define the global surrogate function Ordered subsets idea can be used with any algorithm as long

as the algorithminvolves a sum over sinogram indices. Ti& SP
A ) . . .

S f™) 2 Qulps ™) — BS(p; ™) _algpnthr_n mtroduc_ed above also <_:onta|ns sums over simogra
indices in computing the denominatdf terms (7) and the

which satisfiess(u; u") < L(p) — fR(p) = ®(n), Y > 0 gragient terms;2-¢ (9). We apply the ordered subsets idea
and is tangent tab(y) at current iteratqu". We Maximize oy ooy

(or increase) the functiop(y; ™) at each iteration and repeat
the procedure iteratively. We call this algorithm sepazabl Ordered subsets methods group projection data into an
paraboloidal surrogates (SPS) algorithm. One can show prpered sequence of blocks and processes each block at
that increasing the surrogate functiéfy; 4) also increases ONce. These blocks are usually chosen so that the projsction
the original objective functio®(y). Hence, this algorithm is Within one block correspond to projections of the image with
intrinsically monotonic. The maximization of(;; ") is easy. downsampled projection angles.

Due to the additive separability, the update for each pa@me | et A/ be the number of subsets chosen in the projection
only involves the parameter itself. When a quadratic pgnalt domain. LetS;,..., Sy denote the subsets in the order
usedj.e ¢(t) = t*/2, the maximization can be done exactly inselected. ~ At stepm the following objective function

a single step via Newton’s algorithm as follows: corresponding to the subsét, should be maximized (or

p = D‘1V’<I>(/1") (6) increased):

whereD is ap x p diagonal matrix with diagonal entries

Pp(p3y) = M{ > hi([Aﬂ]i)} — BR(n).
D;; :d?‘i'?ﬁzwjk, forj=1...p.
k

1€Sm

The factor2 in the denominator comes from the separabIThe scaling of the log-likelihood function is necessary idey

o . ] that the effect ofg value is independent of the number of
surrogateS(u; 4™) in (5). The denominator termé' are: subsets. One iteration is completed when the algorithm goes

N through all the projections by going through all the suhsets
d? = — Z aijvici (7). (7) The modification of the SPS algorithm to incorporate ordered
i=1 subsets idea is relatively easy. We call the resulting #lyor

H fort ission t hv. itis advant ?rdered subsets transmission (OSTR) algorithm. The autlin
owever, for transmission tomography, 115 acvantageous &, algorithm is given in Table 1. The maximization step is

use edge-preserving nonquadratic penaltle_s to get !magbs Wimilar to (8) but the curvature and gradient terms are cdatpu
sharper edges. An example for nonquadratic penalties]s [13

using just a subset of the data.

Y(t) = 62 [[t/6] —log(1 + [t/6])], The OSTR algorithm reduces to the SPS algorithm when
where§ is a twiddle factor. We used this penalty in our PLM = 1. Since the projections and backprojections are
reconstruction results. performed for only the elements of a single block, procesein

In th drati It ¢ imization i each block in an OSTR algorithm with/ subsets (OSTR-M)
nhe nonquadratic penalty case, exact maximization Is rlf%)tughly takesl /M of time that it would take for one iteration
casy. _butone can m_onot(_)nlcallylncrease Fhe surrogatetoigie of the SPS algorithm. For PL problem, actually it would take a
by doing a few sub-iterations of the following type. little more thanl /M of the time since the CPU time required for
%jqﬁ(/]; um) computing the gradient and curvatures of the penalty satsog
128y wireu(iy — i) (8) do not change. Yet, one hopes that processing of one block
J KEN; ikpIHT T B increases the objective function as much as one iteration of

fij = i+
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for ‘feaCh iter:ati%m =1,...,niter penalty). The iterations are initialized with an FBP image.
or each subsetm=1,....M There is a speed-up in using more subsets, but as the number of

P _ ) subsets increase, the order-of-magnitude acceleraties wlot
I = Zai] fj, hi = (% - 1) bie ", Vi€ Sy, hold. For example, one iteration of PL-OSTR-16 increases th
j=1 bie™h 4 objective more than one iteration of PL-OSTR-32 (not shown)
pM = So, number of subsets greater than 16 did not seem to improve

convergence for this configuration and data. For comparison

the image is also reconstructed with the paraboloidal gates
i=M E ai,hi, coordinate ascent (PL-PSCA) method which is a fast monotoni

algorithm [7]. The CPU times for one iteration of PL-PSCA and

fory=1,...,p

e . one iteration of PL-OSTR-1 are similar. It is clearly seeatth
dy =—-M Z aijvici(li) PL-OSTR-M algorithms do not converge to the true maximum
1€ 5m whenM > 1. To use the speed-up property and converge at the
for a couple sub-iterations end, one can sequentially decrease the number of subséts wit

. . old o old each iteration. One such run is shown in the same figure where
L= di(ay = i) = By, wikd (B — mR) 9

i o= + : we start with 16 subsets and gradually decrease to 1 aftehwhi
Hj Hj d +2ﬂz wirwy (fi; — oldy :
J k Wok@Cw Uy = By +  the algorithm should converge.
end
end B. Mean Sguared and Segmentation Errors
end
end The reconstructions were done using real data. We wished

to find mean squared errors and segmentation errors on the
reconstructed images. The real image of course was not known
to us. So, we acquired a long 14 hour scan of the thorax
the original algorithm. That is, the objective increase #6r phantom which was almost noise free. We reconstructed the
iterations of OSTR-1 should be close to that increase for oggta with FBP with a sharp filter. Then, we performed a 4 level
full iteration of OSTR-M. This intuitionis verified in theitial  hard thresholding segmentation on this image with attéoniat
iterations and for up to a reasonable number of subsets in thgp parameters assumed to be average standard attenuation
following results section. map values for air, soft tissue, lungs and bone. We obtained
regions for each attenuation level. Then, we eroded these
IV. RESULTS regions with a 5x5 window to get more conservative estimates
) of the regions and calculated the average value of the FB§ama
We acquired a 15-hour blank scah;’¢) and a 12-min i these regions. These new values were assumed to be the
transmission scan datay;{s) using a Siemens/CTI ECAT trye attenuation coefficient levels for the image (air = Gigsi
EXACT 921 PET scanner with rotating rod sources fot 0,035, soft tissue = 0.093, bone = 0.164<¢m Then, the
transmission scans. The phantom used was an anthroporoorpipp image was segmented by thresholding using new levels

thorax phantom (Data Spectrum, Chapel Hill, NC). Thg, optain the “true” phantom image. Figure 3 shows the true
projection space was 160 radial bins and 192 angles, and gantom image.

reconstructed images werag x 128 with 4.5 mm. pixels. The _
system matrixz;; was computed by using 6 mm. wide strip We found normalized mean squared errors (NMSE) for

integrals with 3 mm. spacing, which roughly approximates tfpach method using the true phantom image. The reconstructed
system geometry. images were also hard-segmented with the thresholds found

above and we evaluated their segmentation performance by
A. Reconstructions counting the number of misclassified pixels.

Table 1
OSTR algorithm outline

The attenuation map is reconstructed for both ML and PL For this part, we also applied the emission ML-OSEM
methods using OSTR algorithm with 1, 2, 4, 8, 16 and 3@gorithm to logarithm of the transmission datdog((y: —
subsets. Figure 1 shows objective function increase for tha/bi. Although, there is no theoretical basis for this approach,

ML reconstructions initialized with a uniform image. Thdt is nevertheless used. The results show that this apprisach
order-of-magnitude acceleration can be seen in this plot figferior to the ML-OSTR method and that it should be avoided.

initial iterations. One iteration of ML-OSTR-16 increasés Figure 4 shows NMSE versus iterations for ML-OSTR, ML-
objective almost as much as 16 iterations of ML-OSTR-1 a’@SEM, PL-OSTR and PL-PSCA methods. Figure 5 shows
4 iterations of ML-OS'_I'R-4 for initial iterations. Although o percentage of segmentation errors versus iteratiortado
when ! > 1, the algorithm does not converge to the trué Mlgz e methods. These results show that ML-OSTR algorithms
solution, in practice one would only do a few iterations @singet noisy after a certain number of iterations and that the
ML'_OSTR'M' In the ML_prOt?'em* e_xact maX|m|zat|9n IS NOtiterations should be stopped before convergence. For dgamp
desired since the maximizer image is exteremely noisy. it appears that the ML-OSTR-16 algorithm should be stopped a

Figure 2 shows objective function increase versus itematiothe third iteration for lowest NMSE. ML-OSEM applied to the
for PL reconstructionsd = 2'° and nonquadratic Lange’s logarithm of the transmission data is inferior in qualityatb
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other methods we tried. PL reconstructions have betteitgual 1600 , Transmission PL Algorithms
than ML reconstructions in terms of both lower mean squared | o099 VY YL T srir*
errors and lower segmentation errors. Although, PL-OSTR- | 3

16 algorithm does not reach the true objective maximum, it 1500}
appears to be comparable to PL-PSCA algorithm in terms of
mean squared error and segmentation performance.

wsob /-

Figure 6 shows reconstructed images and their va0of |

segmentations for FBP, ML-OSTR, ML-OSEM, PL-OSTR
and PL-PSCA methods. Each image is the best among their
kind. For example, to obtain the FBP image, we performed 20 1300f
different FBPs with Hanning windows with different cutoff
frequencies and picked the one with lowest NMSE. ML-OSTR
image is obtained by 16 subsets at 3 iterations. ML-OSEM 1200~ - m = = = -
image is obtained by 8 subsets at 2 iterations. PL images are feration

the images at I8 iterations of their corresponding algorithmsFigure 2: Penalized-likelihoo#i(s") — ®(u°).

The bars show the levels of NMSE and segmentation errors.
We conclude that PL reconstruction images are much better
than the images obtained using other methods.

—%—  PL-OSTR-1
—— PL-OSTR-4
—6— PL-OSTR-16

—»—  PL-OSTR-16-8-4-2-1
—— PL-PSCA

Objective Increase

i
w
a
=]

1250F

Initialized with FBP Image

V. CONCLUSION

We introduced a new ordered subsets algorithm for ML and
PL image reconstruction in transmission tomography. Altito
the algorithm does not converge for number of subsets greate
than one, it seems to rapidly increase the objective functio
value in the early iterations. The images reconstructeth fro
real PET data with ML method are worse in quality than images
reconstructed with PL method. However, ML-OSTR is superidyigure 3: Image obtained by hard segmentation of the FBP émag
to ML-OSEM applied to the logarithm of transmission data fgeconstructed from the 14-hour scan assumed as the trueimag
this particular data. The new algorithm is easy to implement
with any type of system model and does not require column
access to the system matrix unlike sequential update Hhgaosi 0.081
such as coordinate ascent. It is also easily parallelizable

NMSE performance

o

o

3
T

We conclude that if an approximate maximum is acceptable
due to practical time and programming constraints, then the
OSTR algorithm offers faster convergence than prior method
However, for guaranteed global convergence to the maximum,
other methods must be used.

o

=3

>
T

x10° Transmission ML Algorithms

normalized mean squared error

ML-OSTR-8
ML-OSTR-16
ML-OSEM-8
PL-OSTR-16
PL-PSCA

0 12 14

398F oI gaEETT

Pttt

N N N N
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iterations

é_§3l94 _____________ S wiosma Figure 4: Normalized mean squared errors versus iteratfons
2 —+— ML-OSTR-4 various methods of reconstruction.
3 —&— ML-OSTR-8
g —©— ML-OSTR-16
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