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Abstract 

Preconditioning methods can accelerate the convergence 
of gradient-based iterative methods for tomographic im- 
age reconstruction and image restoration. Circulant 
preconditioners have been used extensively for shift- 
invariant problems. Diagonal preconditioners offer some 
improvement in convergence rate, but do not incorporate 
the structure of the Hessian matrices in imaging prob- 
lems. For inverse problems that are approximately shift- 
invariant (i.e. approximately block-Toeplitz or block- 
circulant Hessians), circulant or Fourier-based precondi- 
tioners can provide remarkable acceleration. However, 
in applications with nonuniform noise variance (such 
as arises from Poisson statistics in emission tomogra- 
phy and in quantum-limited optical imaging), the Hes- 
sian of the (penalized) weighted least-squares objective 
function is quite shift-variant, and the Fourier precon- 
ditioner performs poorly. Additional shift-variance is 
caused by edge-preserving regularization methods based 
on nonquadratic penalty functions. This paper describes 
new preconditioners that  more accurately approximate 
the Hessian matrices of shift-variant imaging problems. 
Compared to diagonal or Fourier preconditioning, the 
new preconditioners lead to significantly faster conver- 
gence rates for the unconstrained conjugate-gradient 
(CG) iteration. Applications to position emission to- 
mography (PET) illustrate the method. 

I .  INTRODUCTION 
Most statistical methods for image reconstruction re- 

quire minimizing an objective function related to the 
measurement statistics. For realistic image sizes, direct 
minimization methods are computationally intractable, 
so iterative methods are required. For objective func- 
tions that are convex, conjugate-gradient (CG) algo- 
rithms are appealing for reasons of simplicity and po- 
tential for parallelization [l-51, but convergence rates 
may be undesirably slow. Preconditioning methods can 
accelerate the convergence of gradient-based iterative 
methods for tomographic image reconstruction and im- 
age restoration. 

Circulant or “Fourier” preconditioners have been used 
extensively for shift-invariant problems [6-81, for which 
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the Hessian of the objective function is approximately 
block-Toeplitz or block-circulant. However. in applica- 
tions with nonuniform noise variance (such as arises from 
Poisson statistics) the Hessian of the natural objective 
function is shift-variant, and the Fourier preconditioner 
performs poorly. Significant additional shift-variance is 
caused by edge-preserving regularization methods based 
on nonquadratic penalty functions. This paper sum- 
marizes new preconditioners that more accurately ap- 
proximate the Hessian matrices of shift-variant imag- 
ing problems. By accommodating nonquadratic penalty 
functions, this work significantly generalizes our previ- 
ous method [3]. The new preconditioners lead to signif- 
icantly faster convergence rates. The method is applied 
to real position emission tomography (PET) data. 

11. REGULARIZED RECONSTRUCTION PROBLEM 
Consider the following general inverse problem: find 

= [ X I ,  . . . , zP]’ from an estimate of object parameters 
a measurement vector y related to g by - 

- y = Ggtrue + noise. (1) 

One useful statistical criterion for estimating g from y is 
the following penalized weighted least-squares objective 
function [l, 91: 

(2) 
1 
2 -  a(.) = -(y - Gg)’W(y - - G g )  + 3R(.) 

where R(g) is a penalty function that encourages smooth 
or piecewise-smooth estimates, and ,B controls the trade- 
off between spatial resolution and noise [lo]. Usually, W 
is the inverse of the covariance matrix of - y. Our goal is 
to compute an  estimate f of gtrue by minimizing ch. 

Most of the convex penalty functions proposed for reg- 
ularizing imaging problems can be written as follows: 

K 

R(&) = x $ ‘ k ( [ C g - d b ) i  (3) 
k=l 

where C E RKXP and c E IRK, for some number I< 
of “soft constraints” of the form [CxJ~lt R c k .  We con- 
sider convex nonquadratic functions +k that are sym- 
metric, twice-differentiable, and have bounded, nonzero 
2nd derivatives. 
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For simplicity we ignore any nonnegativity constraint (The factor vj(.r) is an effectzve regularzzatzori parameter 
for the j t h  pixel [lo].) This leads to the preconditioner’: for g. One could extend the methods as in [2,12-141. 

The  Hessian of @ is given by 
M:,(g) = D,’B-l(g)D,’, 

H ( c )  = G‘WG + PC’D,.(g)C, (4) B ( g )  = G’G+ D,(g)C’CD,(g). 

where $ k ( t )  = d 2 / d t 2 $ k ( t )  and 

D,(&) = [ ‘ $ k ( [ c g - c ] k ) ]  . 

The ideal precondit,ioner for a CG algorithm would be: 
H-’ (g) which would give superlinear convergence rates. 
Since H-’ is impractical for large p ,  one must find pre- 
conditioners that  approximate H - l .  The standard di- 
agonal preconditioner is the inverse of the diagonal ele- 
ments of H :  

which is impractical. The  preconditioners that we derive 
below all have the same form as (8), but with different 
approximations for the inverse of B ( g ) .  

To proceed, we exploit the heuristic that the effect of 
the penalty term is predominately local. A convenient 
mathematical expression for this heuristic is as follows: 

n 
B-1’2(g)gj M K-l’z(qj(g))gj = K j ( . e ) ,  (9) 

K ( ~ )  = G’G+@c, (10) 

where g j  is the j t h  unit vector. We build this approsima- 
tion into a matrix by using the following exact expansion 
of any positive definite p x p matrix B :  

It ignores the off-diagonal structure of the Hessian of @, 
the correlation between pixels and the 1/r response of 
tomographic systems, so is suboptimal. We have derived j = 1  j = 1  

P P 
B-’l2 - - Bdl/’I  = B - 1 / 2 x g . e !  = c(B-1;2gj)  

I -J 

new preconditioners for this problem [15]; the derivation 
is summarized next. Thus by applying (9) we have the approximation: 

111. PRECONDITIONERS 
j = 1  This section summarizes a sequence of approximations 

to H-’ .  The final approximations yield a new precon- 
ditioner that  one can implement efficiently. 

The  first key approximation is one that we have used 
for analyzing spatial resolution [lo]. Roughly speaking, 
this approximation brings the diagonal covariance ma- 
trix outside of the Fisher information matrix as follows: 

or equivalently: 

B- l (g )  = [ G I G  + D,(g)c’cD,(g)]-l M si(g)s3(g). 

Thus (1 1) leads to the (impractical) preconditioner: 

= D,’S$(g)s3(g)D;l. (12) 
G’WG M D,G’GD,, (6) Now we use the fact that  K is suitable for circulant 

approximations. There is a diagonal matrix Q(7) such 
Wii/c i  93. This that xi gij 23 . where D ,  = D[ti j]  and t i j  = 

exchange is useful because by assumption GIG is ap- K(7)  = [G‘G + vC’C] M Q’0’(q)Q1 (13)  
proximately block-Toeplitz, i.e. shift-invariant, unlike 
G’WG. The matrices on the two sides of approxi- where Q represents the 2D DFT [16]. Thus from (9): 

mation (6) are exact ly  equal along their diagonals, and a 
would also be equal off-diagonal if the W i ; ’ s  were all c j ( 4  M ~ j ( 4  = Q ’ ~ - ’ ’ ’ ( ~ j ( g ) ) Q C j  - .. 

equal. We also apply an approximation analogous to (6) 
to the regularization term: Applying the circulant approximation (13) to M3 gives 

the (impractical) preconditioner: 

‘For brevity, we have omitted several preconditioners from [IS],  
but have retained the matrix riumberirigs for consistency. k k 
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Implementing M j  appears to require 2(p + 1) 2D FFT’s 
per iteration. Although this is considerably less compu- 
tation than required for M3, it remains impractical. 

To further reduce the number of FFT’s, we propose to 
use interpolation. We choose a small number m << p 
of values { i jk} r= l  that cover (most of) the range of the 
values of the ~ j ’ s ,  and precompute the 2D DFT coeffi- 

cients for those values: = n(7j,), b = 1 , .  . ., m. We 
then apply interpolation to approximate the 2D DFT’s 
corresponding to the required values vj  : 

A 

m 

where 
with Cr-l - Xk = 1. Incorporating (15) into (14) yields 

E [o. 11 are the ( h e a r )  interpolation factors 

D 

j = 1  

P / m  

/ 
m / P  

m 

k = l  

where D&) = D[X,(qj(g))] .  Since QQ’ = I ,  this 
approximation suggests the following preconditioner: 

which requires only 2m 2D FFT’s per iteration. Compu- 
tation of 2m 2D FFT’s is O(mplog,p), which for small 
m is moderate compared with the O(p2)  computation 
required to compute the gradient. Note that while the 
preconditioner Mg combines aspects of both the diago- 
nal and Fourier preconditioning methods, the particular 
diagonal matrices used here are very different from the 
conventional diagonal preconditioning matrix (5). 

The standard Fourier preconditioner is the special of 
Mg where vj = 70 and ‘E, = K ‘dj. In this case, m = 1 
suffices, and clearly we will choose ij1 = 170. Then h 1 9  

simplifies to: 

which is essentially the standard Fourier preconditioner 
for shift-invariant problems, e.g. [7]. 

Implementing Mg using FFTs required about 4-13% 
more computation time than the CG algorithm with no 
preconditioning [15,16], yet the improvement in conver- 
gence rate was much greater, as the results below show. 

0 Wcm 
FBP ResonslwdV)n Suppn 

0 1Ycm 

Fig. 1. Grayscale images of the reconstructed FBP image, the 
reconstruction support (the set of pixels estimated). and the 
images reconstructed using each of the three objective func- 
tions: QPULS, QPWLS, NPWLS. 

IV. NUMERICAL RESULTS 
We have applied the CG method with various precon- 

ditioners to several simulated and real PET scans. We 
synopsize only representative results from [15* 161. 

We acquired a low-count PET transmission scan of a 
thorax phantom on an CTI ECAT 921 EXACT PET 
scanner (920653 prompt coincidences, which is quite 
noisy). Random coincidences were collected separately. 
We then computed a 2nd-order Taylor expansion of the 
transmission log-likelihood about the reprojection of an 
initial reconstruction, to  produce a quadratic objective 
function of the form (2). To compare convergence rates, 
we examined the normaIized 12 distance between the n th  
iterate gn and the limiting value gm: 1 1 ; ~ ”  - ~ m \ ~ / ~ ~ $ “ ~ ~ .  

To compute -coo, we ran many iterations of a grouped- 
coordinate ascent algorithm similar to that of [17] us- 
ing Matlab with double precision. We computed .“ in 
C using single precision for the CG method, applied 
to a nonquadratically-penalized weighted least squares 
(NPWLS) objective function, with the edge-preserving 
choice 

$( t )  = b2 [ It/bl - 1% (1 + It/bl) I ,  (18) 

with 6 = 0.004 cm. As shown in Fig. 2, due to the 
shift-variance, the standard Fourier preconditioner is in- 
effective, but the proposed preconditioner Mg leads to  
significant improvement in convergence rate, with only 
a 4-13% increase in computation time per iteration. A 
more dense matrix G, would further enhance the relative 
benefits of the proposed preconditioners. 

We also compared the CG algorithm using the pro- 
posed preconditioners to  the coordinate-descent algo- 
rithms of [1,9]. As in [l], we found that coordinate- 
descent often converged faster than unprecondtttoned 
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NPWLS Precmdkbned CO Algorllhrru [16]. (See Fig. 3 . )  However, we consistently found that 
the CG algorithm wzth the proposed preconditioners con- 
verged significantly faster than coordinate descent [16]. 

A longer and more complete version of this paper will 

A nonnegativity constraint could affect these results. 0 PCG-Fauhr 

be available at  the author’s web site. 
http://www.eecs.umich.edu/-fessler/ 

l n ~ ~ l l z e d  rrtth FBP Img. 

D.S.Tharsl 
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Fig. 2 .  Normalized 12 distance to solution gM versus iteration 
n for the nonquadratically-penalized weighted least squares 
(XPWLS) objective funct.ion. Shown is CG with no precondi- 
tioning, with the diagonal preconditioner ( 5 ) ,  with the Fourier 
preconditioner (17), and with the proposed Mg preconditioner 
(16). The proposed preconditioner provides significant accel- 
eration in convergence rate over conventional preconditioners. 
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Fig. 3. As in Fig. 2, but comparing the proposed Mg precon- 
ditioner to the coordinate descent algorithm described in [9] 
with three values of its relaxation parameter w .  The precon- 
ditioned CG algorithm converges faster than the coordinate 
descent algorithm, and also requires less computation time 
per iteration. 
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