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Abstract 

Single Photon Emission Computed Tomography (SPECT) 
provides a potential to perform in vivo quantification of the 
radioactivity and dose distributions in the process of evaluating 
radiopharmaceuticals. The inherent modest resolution in 
SPECT impedes the potential of accurate quantification. 
Previously, we investigated a joint estimation approach for 
combining SPECT functional information with high resolution, 
structurally correlated MRI anatomical information to improve 
the accuracy of SPECT quantification, and the computer 
simulation results showed that this approach can exploit 
MRI region information that matches the SPECT functional 
information and to reduce artifacts caused by mismatched MRI 
anatomical information. In this paper, we further describe 
the experimental evaluation of the joint estimation approach 
using actual SPECT and MRI imaging with an animal-sized 
phantom. We will describe practical details in applying 
the joint estimation approach and present the experimental 
evaluation results of quantitative analysis. 

I. INTRODUCTION 
All radiopharmaceuticals used in nuclear medicine have to 

be evaluated for their target specificity measured by the tissue 
radiotracer uptake distribution as a function of time in small 
laboratory animals. Conventional in vitro evaluation procedure 
by dissecting and counting has some disadvantages since 
the animal must be sacrificed to determine tracer activity or 
concentration. Thus to obtain the temporal response, multiple 
animals must be sacrificed at each of many time points. 
Measurement variation is thus increased due to differences 
among animals. It would be more desirable to measure the 
consecutive response from the same animal. In vivo estimation 
of radiotracer uptake distribution based on a reconstruction 
of 3D emission tomographic images as a function of time 
can overcome the aforementioned drawbacks, since the same 
animal is imaged repeatedly over the entire time course. Single 
Photon Emission Computed Tomography (SPECT) has the 
potential to perform this type of in vivo estimation, provided 
acquisition, reconstruction and compensation procedures are 
adequately implemented and utilized[2]. However, the spatial 
resolution of reconstructed SPECT images is inherently limited 
due to statistical fluctuations in photon distribution, tradeoffs 
between detection efficiency and collimator resolution, limited 
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photons statistics due to dose restriction, and Compton scatter 
effect. Limited spatial resolution causes erroneous estimates 
of uptake dose distribution and total uptake within an organ. 
On the other hand, MRI images have better spatial resolution 
and anatomical delineation than SPECT images. Since the 
normal function of most organs is often correlated with their 
anatomical structures[3], it is therefore natural for us to expect 
that applying high resolution, structurally correlated MRI 
region side information has the potential to reduce the SPECT 
quantification error in determining the total activity or average 
concentration of tracer in a given organ or ROI. However, in 
many practical situations the MRI anatomical region may not 
be identical to the SPECT functional region because the signals 
of the two imaging systems are derived from entirely different 
physical processes. Simulation results show that using side 
information directly is unlikely to be significantly beneficial 
for the quantification task if there is mismatch[4]. Some 
effort has been made to correct the effect of the mismatches 
[4]. We have also investigated a joint estimation approach to 
reduce the effect caused by the mismatch while keeping the 
benefit of high resolution MRI anatomical information[ 13. 
A joint Penalized Maximum Likelihood (JPML) objective 
function, is used with an joint Space-Alternating Generalized 
Expectation-Maximization algorithm (JSAGE) derived upon on 
SAGE algorithm[5] for SPECT reconstruction. The objective 
function incorporates statistical distributions of both SPECT 
acquisition and MRI region measurement, so that the SPECT 
pixel intensity and functional region are jointly estimated from 
both SPECT and MRI data. In [l], our computer simulation 
results showed that the joint estimation approach with JSAGE 
algorithm surmounts the difficulty of the mismatch between 
SPECT functional region and MRI anatomical region, and 
improved the accuracy of the SPECT quantification. 

Beyond computer simulations, we have performed actual 
SPECT acquisition of an animal-sized phantom with an Animal 
Single Photon Ring Tomograph (ASPRINT) developed in 
our laboratory by Rogers, etal[6] and actual MRI acquisition 
of the same phantom with GE CSI2T unit to evaluate the 
joint estimation approach. In this paper, we will describe the 
theoretical derivation of the joint estimation approach (Section 
11), and some practical issues of applying the approach, such 
as modeling the photon acquisition process, registration and 
segmentation of registered MRI images (Section III). We 
will present the experimental evaluation result of the joint 
estimation approach in terms of image visual quality and 
radioactivity quantification (Section IV). Section V discusses 
problems associated with the joint estimation and possible 
solutions as future work. 
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11. JOINT ESTIMATION APPROACH 
In the joint estimation approach, we choose region labels to 

convey the anatomical regions extracted from MRI, because 
region labels more easily encourage region contiguity, and 
region labels need half as many the parameters as line sites. 
Furthermore, it is also relatively easier to handle region labels 
when extending the method to 3D cases. Thus each SPECT 
pixel(voxe1) Ak has a corresponding region label site, l k .  

However, the region labels I are not simply a "copy" from 
the MRI region information. They are treated as random 
variables just as the SPECT mean intensity variables. After 
being initialized with the segmented MRI, they are jointly 
estimated with SPECT pixel mean intensity variables A, using 
a JPML objective. We update a SPECT mean intensity pixel 
and its corresponding region label simultaneously, such that a 
label-pixel pair updating is mutually constrained. Since region 
labels are estimated jointly from both segmented MRI and 
SPECT data, only those parts of the MR anatomical regions 
that match the SPECT functional regions are represented 
by the estimated labels, and constrain the SPECT intensity 
reconstruction. The mismatched region labels will be updated 
during the joint estimation process, to approach the SPECT 
functional region. Thus the artifacts due to mismatch are 
reduced. 

A. Objective Function 
The JPML objective is as the following: 

Q j o i n t ( X J >  = L(Y, i I A, I )  - U ( X ,  I ) ,  (1) 

where 9 is the SPECT projection data, i is the MR anatomic 
region measurement, X and I are SPECT intensity and label 
parameters to be estimated, L is the joint log-likelihood 
incorporating both the SPECT noise distribution and the MRI 
side information measurement statistics, and U is a Gibbs type 
joint penalty terms. Since SPECT and MRI are independent 
imaging processes, their joint log likelihood function 
conditioned on X and Z is separable, thus the log-likelihood: 
L ( ~ , ~ I x ,  Z) = ~ ( y  I A) + L(Z I z). The SPECT measurements 
have Poisson distributions, thus : 

L(A Y> = l og f (g  I C(-L(X) + Yn l o g Y n ( X ) ) ,  (2) 
n 

where 3n(X) = c k  Q n k h  + rn and Qnk are the elements of 
system matrix, rn is the acquisition background radiation term, "+' represents the equivalence due to a term independent of A. 
We assume that the MRI has additive electrical noise, which 
can be modeled as white Gaussian noise[7], and different 
regions have different intensities. If MRI is segmented using 
simple pixel-by-pixel thresholds, then the log-likelihood for 
Tk given lk  is: ~(i11)  = l O g P ( i k l l k ) ,  where P ( r k l l k )  

is the probability of assigning the label t to the kth pixel 
during segmentation given lk  is the true label. The P ( l k l l k )  

also incorporates the possibility of existing mismatch in the 
segmented MRI. 

The joint penalty term U(X,Z) can be viewed as a log-prior 
pdf of the SPECT pixels and region labels. We adopt a 

hierarchical form of U, thus: 

~ 
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1 1 
U(X,E) = -U1(X I I )  + -U2(1), 

P1 P 2  
(3) 

where U 1  (A I 1) is the log-prior pdf of X conditioned on region 
labels 1, U 2 ( Z )  is the log-prior pdf of region labels, ,B1 and 
,B2 are the regularization parameters. The prior knowledge 
of the joint pixel-label lattice sites is that the pixels tend to 
have similar intensity if the underlying labels are the same, 
and the labels tend to be the same if the corresponding pixel 
intensities are similar. The prior knowledge for regions is that 
they are contiguous, regularly shaped and have small number 
of regions. To encourage smoothness within the same region 
but allow discontinuities between regions in the SPECT image, 
we apply weighted Gibbs function[4] to 171: 

. P  

where ?)(Ak - A j )  is usually a quadratic term, and N k  is the 
neighborhood of pixel k. Usually a 2nd-order neighborhood is 
used. Then the weights W k j  link the pixel IC with its neighbors 
j E N k ,  and can be defined as: 

1 (direct neighbor) if 1s = l j  

(diagonal neighbor) if lk  = l j  (5 )  
if 1s # l j  

When '$ (Ak - A j )  is large, the minimization of the penalty 
pushes the current label lk  to be different from its neighbors. 
This penalty term associates the SPECT intensity vector X with 
the label vector 2, so their estimates are mutually constrained. 
This avoids the domination of mismatched labels extracted 
from MRI over the SPECT reconstruction. To favor region 
contiguity prior, we choose U2 as: 

D 

where W k j  is the same as defined in equation (5). 

B. Reconstruction Algorithm 
We apply an iterative SAGE algorithm[5], with slight 

modification for our JPML objective, because it converges fast 
and ensures a monotonic increase in objective function. To 
maximize the function chj,;,t(X,Z) with SAGE, the conditional 
expectation of the likelihood the SAGE algorithm can be 
straightforwardly modified to jointly maximize the function 
( b k ( A k ,  l k ;  A', z'), with respect to each pixel-label pair, ( ~ k  , ! k ) ,  

by holding the remaining current pixel-label pairs (&, t k )  

fixed as: 



where Qq ( A k  ) Xi) is the conditional expectation of 
log-likelihood defined on the hidden-data space Xi, 
L ( l k ; & )  = h P ( i k l l k ) ,  i is theiterationindex, and V I ( . )  and 
U2 ( a )  are re-defined as: 

The joint update procedure for each (xk ) I k )  pair is done in two 
steps because of the discrete feature of the label, 1: 

I. For each possible state of l k  ) say I ; ,  fix i k k  and k , seek 

2. Evaluate &.(A;, I;; A', Z') for each of the possible pairs 
(A; ) I ; ) ,  choose the one that maximizes c$k, and define it 
as the (A:+', I:+'). 

The new objective, c#+ (Ak , / k  ; A', 1' ) contains mixed discrete 
and continuous variables. The conventional definition of 
convexity does not apply to this objective function, and 
the global convergence is not guaranteed in this iterative 
reconstruction. We thus used a deterministic annealing 
procedure[S] by applying a sequence of penalty functions with 
an exponentially varying p 2 .  

111. PRACTICAL ISSUES OF THE APPROACH 
A. Statistical Model of ASPRINT acquisition 

modeled as: 
In a general SPECT system, the projection acquisition can be 

(9) Y - Poisson(A X + r ) ,  

where Y is the measured projection vector in a photo-peak 
energy window, X is the pixel vector, A represents the 
system response weights matrix, and r represents the mean 
contribution to the projection from background radiation. In 
ASPRINT, the system weights matrix is calculated according 
to the system geometry and experimentally obtained detector 
mean response. ASPRINT provides the azimuthal collimation 
with a slit aperture ring. Both edges of each slit have depleted 
uranium (DU) to reduce the penetration of photons through the 
edge area. However, the DU emits small amount of y photons 
in a wide energy range. This affects the photo-peak projection 
acquisition, And we have observed that the projection of DU 
looks like white noise without any spatial dependency to the 
slit position, and the energy spectrum of slit edge radiation 
looks flat in the energy around the photo-peak window [9]. In 
addition to DU, Compton scatter effect also contributes to the 
photo-peak projection. And the projection data from scattered 
photons are very smooth [lo]. We propose a statistical model 
for the projection in the photo-peak window to include the 
background radiation and Compton scatter effect: 

~ 
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where Y ,  is the photo-peak projection, y, and Tu are the 
mean of the scattered photons and the mean of the room 
background plus DU photons contributing to the photo-peak 
projection, P ,  is the measured detector element efficiency, and 
A is the system weights matrix, which may include attenuation 
factors. Here the rs and Tu can be regarded as a background 
radiation term, T ,  in equation (9). To estimate V, and Tu, 
we apply a simultaneous three-iso-width-energy-window 
acquisition method. They are scatter, photo-peak, and 
background windows from low to high energy. We use the 
projection acquired in the background window to estimate the 
mean contribution from depleted uranium in the photo-peak 
window, and use the partial of the projection acquired in 
the scatter window to estimate the mean contribution from 
scattered photons, as: 

where Tu is the mean of background window projection, 
Y,, is the mean of the scatter window projection, which can 
be estimated by smooth(P,' * Y,,), Ybw and Y, ,  are 
the projection acquisition in scatter and background windows 
respectively. P;' is detector efficiency correction, and K 
is the scatter multiplier estimated from simple dual-window 
correction method [ll]. Thus the model is actually: 

- 

The JSAGE is thus based on the above model. 

B. Phantom Design 
We made an animal sized phantom composed of a phantom 

body with three different syringes aligned parallelly in axial 
direction, and a leak-proof lid, see Fig.1. The syringes are 
filled with mixtures of TcO4 and Gd-DTPA (MRI contrast 
agent) with different concentrations. There are two sets of ten 
fiducial markers on body surface, one axial and one helical. To 
simulate a missing region, the solutions in the center syringe 
and inside ph 

Fig. 1 A photograph of 2D phantom. 

C. Registration and Segmentation 
To be able to apply MRI region information, a registration 

is performed between SPECT and MRI using the estimated 
coordinates of fiducial markers in the SPECT filtered- 
backprojection(FBP) reconstruction and acquired MRI slices. 
Levenberg-Marquardt algorithm is applied to obtain the LS 
estimation of rigid body transformation parameters. The MRI 



images are then transformed into SPECT image domain using 
the estimated parameters and tri-linear interpolation. 

Because of Gd-DTPA, all the regions in MRI are well 
differentiated from its background region. We estimate the 
mean and variance of each region. Under the Gaussian 
assumption, we apply Maximum A Posteriori (MAP) criterion 
and likelihood ratio test to seek the threshold to segment 
regions and calculate the probability P(il/). However, if 
we suspect that there might be a new functional region D 
in SPECT while there is no such region MRI by observing 
corresponding FBP and MRI slice, as shown in Fig.2, then we 
will assign a probability P(y = CII = 0). Usually it is close 
A- 1 

Fig. 4 15 consecutive image slices of the phantom from joint estimation 
approach. The spots around are fiducial markers. 

LO 1. 
SPECT FF3P Segmented MRI 

I I I 

Fig. 2 Compare FBP and MRI for P(fk I l k )  where probable mismatch 
exists. 

IV. EXPERIMENTAL EVALUATION RESULTS 

We performed similar evaluations as we did in the computer 
simulations[ 13. Fig.3 shows the reconstructed images of the 
center slice of the phantom using different methods. (a) is from 
FBP, we see that the image is noisy and boundaries are blurrd, 
(b) is from PML-SAGE, without any region information, the 
smoothness is achieved at the cost of global blurring; (c) is 
from PML-SAGE with weighted Gibbs penalty where the 
weights are defined by the MRI region. We see that for those 
regions whose corresponding MRI regions are available, the 
region are smooth and boundaries are sharp. However, for the 
center region whose corresponding MRI region is missing, 
after the reconstruction, we see the blurring effect; (d) is from 
joint estimation where the region labels are initialized with the 
MRI region. We see that the center region is recovered during 
the joint estimation and the other regions remain good with 
MRI region information. Fig.4 and Fig.5 show 15 slices of 

Fig. 3 Reconstruction of the center slice (slice 9) from different 
methods. (a): Top left; (b): Top right (c): Bottom left (d): Bottom 
right 

Fig. 5 15 slices of region labels from joint estimation approach. 

approach. Because of the non-convexity of the objective 
function, global convergence is not guaranteed even though 
deterministic annealing is applied. The problem is illustrated 
in slice 8 and slice 14. The center hot region labels are not 
recovered by joint estimation, and consequently, the intensity 
image has a blurred boundary for the center region. 

We also applied bias vs. STD curve evaluation to obtain 
an objective comparison among the reconstruction approaches 
in terms of the estimated total activities in different objects 
(syringes) using 30 ASPRINT consecutive acquisition of the 
phantom. 

Eh8 vs. 8TD Comprbn 

Fig. 6 Bias vs. STD comparison for the estimated total activity in the 
small syringe near the edge of the phantom (no mismatch). The error 
bars of the estimations of both bias and STD are shown for each point. 

image intensities and region labels from the joint estimation 
Figd shows the bias vs. STD curves for the total activity 

estimated for the small hot syringe near the edge of the 
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phantom. Case 1 is from fan-beam FBP with 3rd-order 
Butterworth windows of different cut-off frequencies. Case 
2 is from fan-beam FBP with Wiener filters with different 
cut-off frequencies. Case 3 is from PML-SAGE with 
spatially-invariant weighted Gibbs penalty. Case 4 is from 
PML-SAGE with weighted Gibbs penalty where the weights 
are defined by MRI region information, and Case 5 is from joint 
estimation where the region label variables are initialized with 
the same region. Apparently, Case 4 and 5 perform better than 
Case 1, 2, and 3, because the correct MRI region information 
improves the quantitative evaluation of the total activity of the 
region of interest as we have shown in simulations. In addition, 
the closeness of Case 4 and Case 5 shows that when the MRI 
region information matches the SPECT region information, 
the performance of joint estimation is similar to the “direct” 
application of MRI side information in PML-SAGE(Case 4). 

Bias VS. 8To canp.ri.MI 

BIAS x 

Fig. 7 Bias vs. STD comparison for the estimated total activity in 
the small syringe at the center of the phantom. Error bars of the 
estimations of both bias and STD are shown for each point. 

Fig.7 shows the bias vs. STD curves for the total activity 
estimated for the small hot syringe at the center of the 
phantom. Case 1,2,3,4 and 5 are the same as for Fig.6. In this 
situation, MRI region information for the center hot region 
is missing, so that the performance of “direct” application of 
MRI information in PML-SAGE with weighted Gibbs penalty 
(Case 4) comes close to the performance of PML-SAGE 
with spatially-invariant weighted Gibbs penalty(Case 3), and 
also close to the FBP reconstruction. This fact confirms that 
when using missing region information “directly” to define 
the weights, the performance is no better than those without 
region information. In the joint estimation(Case 5),  because of 
the recovery of the center region, the curve illustrates reduced 
estimation bias. Here the unrecovered region cases in joint 
estimation were excluded in bias-variance calculation. 

v. SUMMARY AND DISCUSSION 
We have proposed a joint estimation approach which 

incorporates MRI anatomical region information into SPECT 
reconstruction to improve SPECT functional tracer distribution 
quantification based on a joint PML with JSAGE algorithm. It 
exploits the MRI region information that matches the SPECT 
functional information and to reduce the artifacts caused by 
mismatch between MRI anatomical region information and 

SPECT functional region information. The evaluations of bias 
vs. STD trade-offs of experimental results with matched and 
missing MRI region information show that the aim has been 
accomplished. However, the global convergence of the joint 
estimation approach is not guaranteed due to the non-convex 
property of the joint PML objective function, caused by the 
discrete nature of the label variables in the objective function. 
One possible solution is to apply a continuous label model. 
Originally, a region label variable was designed as a scalar 
variable, 1, which takes one value out of an integer set with 
each integer representing a region type. In the new model, each 
label L is a vector variable, 1, with each element representing 
the probability of the voxel site belonging to a region, and the 
elements’ sum is equal to 1. Here each element is a continuous 
variable. This is probable to improve convergence property for 
the JPML objective function. 
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