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ABSTRACT 

This paper presents a method for incorporating anatom- 
ical NMR boundary side information into penalized 
maximumlikelihood (PML) emission image reconstruc- 
tions. The NMR boundary is parameterized as a pe- 
riodic spline curve of fixed order and number of knots 
that is known a priori. Maximum Likelihood (ME) es- 
timation of the spline coefficients yields an “extracted” 
boundary, which is used to  define a set of Gibbs weights 
on the emission image space. These weights, when cou- 
pled with a quadratic penalty function, create an edge- 
preserving penalty that incorporates our prior knowl- 
edge effectively. Qualitative analysis demonstrates that 
our method results in smooth images that do not suf- 
fer loss of edge contrast, while quantitative estimates 
of bias and variance for various values of the smoothing 
parameter show an improvement over standard quadrat- 
ically penalized maximum likelihood. 

‘11. INTRODUCTION 

Emission computed tomography (ECT) image recon- 
structions, which are generated from data that con- 
sists of counts of detected radionuclide decay events, 
have been traditionally poor in terms of the sensitiv- 
ity/resolution (bias/variance) tradeoff inherent in any 
image reconstruction problem. Many factors including 
dose limitations, scatter, attenutation, and detector ef- 
ficiency contribute to the low quality of these images. 
Recently, however, various researchers have suggested 
that when functional and anatomical boundaries are 
likely to  be spatially correlated, anatomical boundary 
curves from NMR images, when used as side informa- 
tion, might improve the quality of emission image re- 
constructions [l],[2], [3]. We focus on the case where a 
single boundary of interest is present in both the emis- 
sion and NMR images. In this paper? we describe a new 

spline-based method of incorporating NMR-derived anatom- 
ical boundary information into the penalized maximum 
likelihood reconstruction (PML) algorithm for estimat- 
ing radionuclide concentration in the ECT image. 

2. THEORY 

2.1. NMR System anid Boundaries 

We make three common assumptions about the mag- 
netic resonance imaging system: it is linear and spa- 
tially invariant, its point, spread function is Gaussian, 
and the source of noise is additive thermal noise intro- 
duced solely by the electronic instrumentation. This 
noise is well-modeled by white Gaussian noise [4]. Un- 
der this model, the magnetic resonance image I corre- 
sponding to  a proton spin density It,,, is 

q x ,  Y) = - I t r o e ( X ,  Y) * * q X ,  Y) + j v ( x ,  Y) 1 (1) 

where the point spread function G is given by 

N is a zero-mean spatial white noise process whose vari- 
ance we will denote by 0.2, and the ** operator denotes 
2D convolution. Figure 1 is a simulated discretized 

Simulati?d NMR Image 
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Figure I: Simulated NMR image 
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NMR image of an elliptical phantom of interior inten- 
sity 6.0 and background intensity 0 with U ,  = 1.2 pixels 
and r; = .20. 

We parameterize the NMR phantom (It,.,,) bound- 
ary using a periodic polar spline function f(4) of known 
degree and known number of knots. A peraodac polar 
splzne of degree d defined with respect to strictly in- 
creasing scalar “knots” { k l ,  . . . , k,} E [0,27~] is any 
function f ( q 5 )  which has k l  = 0 and k ,  = 27r, and 
is 

(i) Continuous on [lel, le,] 

(ii) Has d - 1 continuous derivatives on [ k l ,  kn] 

(iii) Is a polynomial of dth degree or less on intervals 

(iv) Satisfies f(j)(/cl) = f ( ~ ) ( k , )  

[kz,kz+l] i = 1, 

j = 0,. . . , d - 1 

The simplicity, continuity, and smoothness of splines 
has made them an obvious choice as boundary mod- 
eling functions in many applications [5], [6]. S’ ince a 
polar spline is a single valued function it can be used 
to represent any closed curve that can be defined as a 
polar function with respect to some interior point (i.e. 
a star shaped region). This requires that the interior 
point be known (or estimated) a przorz. We will assume 
in this paper that this polar origin is known, and we 
will use a quadratic spline model consisting of n = 16 
equi-angularly spaced knots on [0,2n]. 

Any n-knot quadratic, periodic spline function on 
[0,271] can be expressed as a linear combination of a set 
of n b-spline basis functions [6]: 

fe(4) = 4 
j=1 

where each basis function B,(q5) depends on the de- 
gree d as well as the number of knots n,  and is defined 
in terms of divided differences of truncated polynomial 
functions (see [5]). With the b-spline parameterization 
the phantom It,.,, in (1) becomes a parametric function 
of the vector of coefficients 8 = ( B 1 ,  

extract the boundary side information from the dis- 
cretized NMR image using ML estimation of 8. Since 
the noise model is Gaussian this is equivalent to  solving 
the non-linear least squares problem: 

Here 1’s dependence on 6 has been explicitly written, 
and the operator ** now represents discrete rather than 
continuous convolution. In order to  minimize this ob- 
jective function, we must generate a smoothed version 
I,“,,, * * G of the “true” image corresponding to bound- 
ary 6. For simplicity, we assume that the Gaussian 

noise variance, point spread parameter U , ,  and the 
NMR image intensity inside the spline boundary are 
known (our method could easily be extended to include 
these quantities as parameters to be estimated). 

2.2. Modified Penalty for Emission Data 

In emission tomography, a patient is injected with ra- 
dionuclide, and emissions are counted by pairs of detec- 
tors oriented around a particular anatomical slice. The 
reconstruction problem consists of estimating parame- 
ters X = (AI,. . . , A,), the radionuclide concentrations 
in the slice pixels, from a dataset Y of detected counts. 
The emission measurements have independent Poission 
distributions, and we assume that Y, has mean 

j 

where the a,j are proportional to the probability that 
an emission in pixel j is detected by the nth detector 
pair, and { r n }  represents additive background events 
(e.g. random coincidences). Given a measurement re- 
alization (sinogram) Y = y, the goal in PML emission 
reconstruction is to  compute the penalized maximum 
likelihood estimate of the emission intensities, de- 
fined by: 

X = argmaxx {lnf(y;  A) - P ( X ) }  (3) 

where f(y; A) is the Poisson probability distribution of 
random vector Y ,  and P ( A )  is a roughness penalty. A 
common choice for the penalty P ( X )  is the function 

(4) 

where the summations above are over pixels, and {wk,} 

is a set of penalty weights that for fixed k promote 
smoothing within the neighborhood of the kth pixel. 
We use a Gibbs weighting scheme, where a first-order 
2D pixel neighborhood consists of four (up, down, left, 
right) adjacent neighbors, a second-order neighborhood 
includes all eight surrounding pixels, and the weights 
are chosen to be symmetric (wkj = w j k )  with w k j  non- 
zero only in the neighborhood of the kth pixel. 

Since large P decreases our objective function, it 
is clear that the maximization of (3) will attempt to  
some extent to  minimize P by encouraging pixels with 
non-zero weights to take on similar values in the recon- 
struction A. The smoothing parameter p controls the 
tradeoff between the conflicting goals of maximizing 
In f(y; A) and minimizing P(X) .  The objective func- 
tion maximum can not be found analytically; there- 
fore, an iterative method must be used. In the sequel 
we use the SAGlE3 algorithm [7] to maximize (3). This 
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EM-type algorithm is characterized by monotonic, fast 
convergence. 

Choosing a uniform weight scheme (e.g. all wkg = 
1) results ’in a global smoothing of the reconstructed 
image that in turn causes severe bias as image detail is 
blurred indiscriminantly across region boundaries. Our 
side information 8 can be used to encourage more in- 
telligent smoothing that occurs within, but not across, 
the region boundary present in the NMR image (which 
is assumed correlate highly with the functional region 
boundary). We encode this information into the Gibbs 
weights as follows. First, a “soft limited” image I* is 
generated whose pixel intensities lie in [0,1] - each 
intensity is equal to  the normalized area of that pixel 
which belongs to the interior of closed curve 8. Then, 
the set of weights { w i j }  is assigned using I* as follows: 

1 min(I!,I!) : I ! , I i  2 .50 
wJk(I*) = 1 - max(I!, 1:) : I!, I! < .50 

{ o  : else 

This scheme divides image pixels into two groups, inte- 
rior and exterior, and associates all pixels whose inten- 
sities are 2 .50 to the interior and the remainder to the 
exterior. The strength of the bond between neighbors 
of the same type varies between .50 and 1, and is equal 
to the value of the smaller neighbor (interior) or one 
minus the larger neighbor (exterior). 

2.3. Mean Uptake Measurement 

To compare the performance of PML emission recon- 
struction with and without side information, it is cru- 
cial to examine the tradeoff between the bias and vari- 
ance components of mean squared estimate error. In 
this paper, we focus on mean uptake in a region of in- 
terest (ROI) defined as the pixels where the elliptical 
hot spot of the phantom pictured in Figure 2(a) 1s ’ non- 
zero. If we let be a vector whose length is the same 
as X and is 1 in the specified ROI and 0 elsewhere, we 
can estimate mean uptake as 

.. - - -  a=- 
M 

where A4 is the number of pixels in the ROI and oper- 
ator ’ denotes vector transpose. The bias and standard 
deviation of our mean uptake estimate are defined as 

b(&)  = E[&] -a 
s(&) = &[(& - E[&])2] 

In the simulations that follow, we quantify estimator 
performance by examining estimates of the bias and 
standard deviation of a for a wide range of values of p, 
the smoothing parameter. 

3. RESULTS 

3.1. Qualitative 

To qualitatively assess the differences between recon- 
structions performed with no side information (w jk  = 1 
for all neighbors), noiseless (ideal) side information, 
and noisy (extracted) side information, we generated 
simulated PET emissioin data for the 64 x 64 phan- 
tom shown in Figure 2(a) using 64 bins and 60 angles 
covering an orbit of 180 degrees. Total counts were 
normalized to lo6, random coincidences made up 15% 
of total counts, and effects of both attenuation and lim- 
ited detector efficiency were ignored. 

Figure 2 (b)-(d) shows reconstructions that were 
obtained by maximizing; the PML objective via 40 it- 
erations of the SAGE3 algorithm. A 2nd order Gibbs 
neighborhood was used, and the algorithm was initial- 
ized with a filtered backprojection reconstruction (Han- 
ning filter with a discrete frequency cutoff of .SO). Fig- 
ure 2(b) is the reconstructed image when p = 0 and 
no side information is used: as one would expect, the 
boundary of the ROI ellipse is severely blurred. In fig- 
ure 2(c), we kept p consl,ant, but encoded ideal bound- 
ary side information into the Gibbs weights. Note that 
despite the smoothing that has been achieved in both 
background and interior regions, the ellipse edges are 
perfectly clean. Figure 2(d) shows the result using side 
information that has bleen extracted from the simu- 
lated NMR image of Figure 1. Twenty iterations of 
a standard conjugate gradient algorithm were used to 
perform the minimization of (2) .  Some boundary esti- 
mation error is evident; however, considering the level 
of smoothing and blurring present in the NMR image of 
Figure 1, the reconstruction quality seems quite good. 

3.2. Quantitative 

Bias and standard deviation estimates for our measure 
& of the mean uptake in our ROI were obtained by re- 
constructing 100 independent realizations of emission 
data via 40 SAGE3 iterations for a range of /3 val- 
ues. Sample mean and standard deviation values were 
then used to  calculate bias and standard deviation esti- 
mates, which are expressed in our plots as a percentage 
of the true mean uptake value for our region of interest. 
Figure 3 shows the performance of uniform versus ideal 
side information. The uniform and ideal curves shown 
were swept out from upper right to lower left by in- 
creasing p. We can immediately see that the use of side 
information has improved reconstruction performance 
with respect to  both bias and % standard deviation 
for nearly all values of (note that the perfect perfor- 
mance would be achieved at the origin, where both bias 
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Figure 2: (a) emission phantom with background ellipse of intensity 3 and ROI ellipse of intensity 9. (b) emissioi 
reconstruction using 40 sage3 iterations with no side information (p = 0). (c) using ideal spline side information. (d 
using a spline extracted from a single noisy NMR image via MLCG estimation. 
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Figure 3: Bias variance estimates for reconstructions 
of Figure 2 (b) and (c) as a function of f l  
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