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Abstract 
We have investigated the improvement in resolution and 

sensitivity for brain imaging which would result by the 
addition of a single stationary vertex view to the tomographic 
data. This method has the practical advantage of being 
relatively inexpensive and easy to implement. The uniform 
Cramer Rao bound is a plot of the minimum achievable 
standard deviation for estimating the pixel intensity as a 
function of the bias gradient length. Uniform CR bound 
analysis indicated an improvement in performance when the 
vertex detector is added, especially for centrally located pixels 
for which improvement is seen over the useful depth for brain 
imaging. Simulation experiments were done with a simple 
six slice phantom and with the Hoffman brain phantom. 
Visual inspection of the reconstructed images showed 
improved resolution and noise characteristics over 
reconstructed images without the vertex data. Quantitatively, 
substantial reduction in mean square error was observed for a 
plane close to the vertex detector. Improvement reduced as 
distance from the vertex detector is increased. Background 
activities inside the field of view of the vertex detector but not 
the tomograph were represented by several blobs of activity 
on a plane lying outside the reconstruction volume. This 
activity was estimated by 3D spline fitting jointly with the 
image reconstruction process. Adding the vertex view to 
conventional brain SPECT should lead to improved cortical 
imaging, and to moderate improvement for deep structures. 

I. INTRODUCIION 
The predominant noise in SPECT imaging is Poisson 

which arises from the random nature of radionuclide decay 
and limited detection sensitivity of collimated imaging 
systems. In these systems there is always a compromise 
between sensitivity and spatial resolution. SPECT system 
sensitivity can be increased by improving the collimator 
geometric efficiency which decreases spatial resolution. Cone 
beam collimation used with conventional rotating Anger 
cameras is able to increase both resolution and sensitivity by 
reducing the field of view, but it has the drawback of 
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incomplete sampling which degrades the image quality [l]. 
Another approach to increase both resolution and sensitivity 
is to increase the amount of active detector surface that 
simultaneously views the organ of interest. 

Addition of the vertex view data to the conventional 
tomographic data set is motivated by the desire to increase 
both the resolution and sensitivity for SPECT brain imaging, 
and it has the advantage of being relatively inexpensive and 
easy to implement. Existing systems can be modified to 
iylude the vertex detector without major alternations in 
hardware and image acquisition software. Substantial 
improvement in sensitivity for a given resolution can be 
achieved by positioning the vertex collimator in contact with 
the head. As the vertical dimension of the head is less than 
its diameter, the brain on average will be closer to the vertex 
detector. Hence the vertex data set will have higher resolution 
and reduced self attenuation when compared to the 
tomographic data set. Also, since fewer brain pixels are to be 
estimated along a vertex view projection element, these 
projections will have higher information content. And 
finally, since the tomographic data set is complete without the 
vertex view, portions of the vertex view can be disregarded to 
eliminate focal areas of uptake which are outside the 
reconstruction volume without introducing artifacts. 

However, there are also challenges that are unique to this 
imaging geometry. First is the need for a 3-dimensional 
image reconstruction method. Conventional filtered 
backprojection (FBP) algorithm cannot incorporate the vertex 
data set as this sampling geometry does not fulfill the 
sampling requirement of 3D-FBP. We have adopted a 
penalized weighted least squares (PWLS) objective in 
conjunction with the iterative coordinate descent (ICD) 
algorithm as the image reconstruction method [2]. This 
algorithm converges rapidly to a global minimum of the 
objective function, readily incorporates a nonnegativity 
constraint and local roughness penalty, and easily 
accommodates the non-standard imaging geometry. Second 
there is a problem introduced by background activity arising 
from organs outside the brain (such as salivary glands, lung, 
heart and the thyroid) that are in the field of view of the 
vertex detector but not the ring tomograph. This background 
activity must be estimated as a part of the image 
reconstruction process, and the system model must be 
modified to incorporate it. 



Evaluation of new tomographic imaging geometries is a 
long standing problem which is made even more difficult 
when different image reconstruction algorithms are to be 
used. Simulation studies are commonly employed, but the 
image quality is strongly dependent on the type of 
reconstruction algorithm used, and by the choice of various 
algorithm parameters which affects bias and variance. There 
exists a powerful methodology for studying the intrinsic 
benefits of different data acquisition methods which 
decouples the data acquisition process from the reconstruction 
algorithm. This methodology involves the computation of 
theoretical lower bounds on the mean square error which is 
specified by the statistics of the raw data alone. Hero et.al. 
describes a 'uniform' Cramer Rao bound that is applicable to 
all estimators whose bias gradient length is less than a 
threshold and makes possible the comparison of different 
biased estimators [3]. In this paper, we used the uniform CR 
bound to assess gain in performance for addition of the vertex 
data set to conventional tomographic data. 
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A. Simulation Experiments 

1)  Experimental Setup 
Imaging System: The tomographic system is based on 
SPRINT II [4]. Collimation is provided by a 10 slit ring 
aperture which assumes 10 angular positions combined with 
a slice collimator. Geometric slit resolution at the center of 
the field of view is 13.4 mm. The geometric efficiency is 
9x10"' for a point source at the center of the field of view. 
The detector ring is composed of 11 detectors with 22 bars, 6 
mm wide each. The vertex detector is fitted with a parallel 
hole collimator with holes of diameter 2.05 mm. The length 
of the collimator is equal to 2 cm with a point source 
efficiency of 525x10"'. The intrinsic resolution of the vertex 
detector is assumed to be 4 mm FWHM Gaussian with a 
system resolution of 13.9 mm at 10 cm from the face of the 
vertex collimator. Both systems model a uniform attenuation 
of 0.15 cm-'. 

Object Model: The fust object was used in the simulation 
experiment and uniform bound experiment. The object is 
cylindrical, consisted of six slices 1.66 cm thick and 22.2 cm 
in diameter represented by a 32x32 image matrix of 6.9 mm 
pixels. The middle of the top slice is located 2.33 cm from 
the face of the vertex collimator. This models the top surface 
of the brain to be 1.5 cm from the face of the vertex 
collimator to allow for the skull and CSF. The object is 
shown in Fig. 1. A set of noisy projection data with and 
without the vertex data set was obtained from a sequence of 
200 repeated trials assuming 1.79~10' counts were detected 
per SPRINT slice. The regularization parameter was varied 
to introduce different degrees of bias in the reconstructed 
image. All quantitative results were based on simulation 
results for the simple phantom. The second object was the 

digital Hoffman brain phantom. Ten slices of the Hoffman 
brain phantom, 64x64 pixels each were reconstructed. The 
pixel size was 3.45 mm. Each slice of the phantom is 1 cm 
thick and the top slice is 1.5 cm from the surface of the 
vertex detector. 

_ _ _ _ ~  ~ 

Figure 1: Simple phantom for uniform bound experiments and 
simulation experiments. Plane 1 (top left) is 2.33 cm from the 
vertex detector; plane 6 (lower right) is 11.46 cm from the vertex 
detector. 

2). Image Reconstruction Algorithm 
The reconstruction algorithm is based on minimizing the 

following penalized weighted least squares objective function: 

1 1 2 
@) = 7 I: W j k  j -e k ) 

j k e N ,  
(3) 

where N, is the set of eight neighbors of the jth pixel on the 
same plane. The weights wp equals 1 for horizontal and 
vertical neighbors and 1/& for diagonal neighbors. A 
discussion of the convergence properties of PWLS+ICD can 
be found in [2]. It is a natural requirement for the pixel 
intensities to be nonnegative, and we included a 
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nonnegativity constraint in the algorithm. The ICD 
algorithm exhibits fast convergence for high spatial 
frequencies, so if we initialize the reconstruction with a set of 
2D FBP images, which gives a reasonable estimate of the 
low frequencies, then PWLS+ICD converges rapidly. 

3). Background 

We found in HMPAO patient studies that activity from 
salivary gland, thyroid and the chest comprise about 20% of 
the total activity detected by the vertex detector but not 
detected by the ring gantry. To account for this background 
activity in image reconstruction, we modified the system 
matrix as follows: 

We modeled this background activity to lie on a plane 
containing several blobs of activity of different intensity and 
location lying outside the reconstruction volume. This plane 
is located relatively far away from the vertex detector, hence 
it will be much blurred by decreased collimator resolution, 
increased scatter and attenuation. We parameterized this 
plane with bivariate cubic B-splines on a coarse grid. The 
vertex weights matrix for the background plane, V,, is the 
transfer function which maps each of the bivariate B-splines 
onto the detector plane. The task of image reconstruction is 
then the joint estimation of the object pixel intensities and 
the coefficients of B-splines for the background plane. 

B. The Uniform CR Bound 
In [3], a ‘uniform’ Cramer-Rao bound was obtained which 

gives the minimum achievable variance for biased estimators 
whose bias gradient lengths are less than a pre-specified 
threshold ‘6 ’ where bias gradient length is the norm of the 
gradient of the bias with respect to e .  Instead of 
constraining the bias gradient vector like the biased form of 
the classical CR bound, the uniform bound constrains the C- 
norm lHlc of the bias gradient vector. For a non-singular 
Fisher information matrix, the uniform lower bound and the 
bias gradient for the parameter 0 ,  are given by equations (5) 
and (6) respectively: 

- e, is the unit vector with 1 as the first entry and h > 0 is 
given by the unique non-negative solution of the following: 

(7) 

d, is the optimal bias gradient in the sense that it gives the 
minimum variance for all bias gradient vectors of the same 

g(a) = d,v, = ti * 

length. In equations (5) and (6), the matrix C is an arbitrary 
nxn symmetric positive definite matrix. C can be chosen to 
reflect apriori knowledge of the object, where C = 1 specifies 
the Euclidean norm. Z$ is the Fisher information matrix. 
For SPECT the FIM is given by [3] 

where A is the system matrix, and 11 = AB + a, with being 
the mean of background counts. 

Both B(e,t i)  and d, are uniquely determined by h . To 
sweep out the bound curve, we only need to compute the 
value of I?@, 6) and d, for several values of 3, . We have 
implemented the conjugate gradient algorithm to determine 
the matrix inverse. 

C. Uniform CR Bound Experiment 
Part I: To get a theoretical picture of the gain in performance 
by the addition of the vertex view to a stationary SPRINT 
ring, the uniform lower bounds were determined for a center 
hot pixel of plane 1 from a group of 4 pixels and the single 
hot center pixel of plane 6 of the phantom in Fig. 1. For this 
experiment, the imaging parameters were set to be the same 
as the simulations experiments. 
Part Ik In this experiment, bounds were calculated to 
demonstrate the effect of addition of vertex view on central 
pixels versus peripheral pixels. The two phantoms illustrated 
in Fig. 2 were used, and both angular and radial sampling 
were doubled compared to Part I ,  to ensure sufficient 
sampling for edge-to-center comparison. The dimensions of 
the phantoms are the same as Part 1. 

Figure 2 Phantoms for second part of bound experiment 
Left: Phantom with hot spots at the periphery. 
Right: Phantom with hot spots near the center 

111. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Simulations 

1). Simple Phantom 
Fig. 3 shows the reconstructed image with and without 

vertex data set. To compare quantitatively the reconstructed 
images with and without the vertex data set, the bias and 
variance for a hot pixel at the edge of each of the six planes 
were determined using the standard method of moments 
technique. A comparison of the bias and variance trade-off 
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for the pixel of interest in the six planes is shown in Fig. 4. 
The pixels of interest for planes 1, 2 and 3 are the small hot 
pixel of size 1 at the edge, while for plane 6, it is one of the 
pixels from the group of four hot pixels at the edge. The hot 
edge pixel of planes 1,2  and 3 are at distances 12.7, 12.1 and 
10.5 pixels form the center respectively and they have 
different bias and variance tradeoff characteristics even for 
tomograph only data. Pixels that are further away from the 
center have higher resolution as they are closer to the detector 
ring and have more favorable bias and variance tradeoff 
characteristics as demonstrated by the bias and variance 
curves. 

Figure 3: Left: 30 iterations of PWLS reconstruction for rhg+vertex 
data, J set to match ratio of geometric resolution. Right: 30 
iterations of PWLS reconstruction for ring only data. 

Figure 4 Bias and standard deviation tradeoff characteristics of 
reconstructed image with and without vertex data. 

2). Background 

Figure 5: Left: Simulated background plane. 
Middle: Vertex detector projection data 
Right: Reconstructed background plane. 

Fig. 5 shows the background plane, the projection data of 
the vertex detector and the reconstructed background plane by 
spline method. Fig. 6 Left is the reconstructed image with 
the background plane modeled, Fig. 6 Right is the 
reconstructed image when the reconstruction algorithm does 
not model the background plane. The background plane 
shows up as hot spots on plane 1 of the image, and there are 

ring artifacts at the edge of the slice indicating mismatch of 
system model. 

Figure 6: Left: Reconstructed image with background plane 
modeled. Right: Reconstructed image when reconstruction 
algorithm does not model background plane. 

3) Hoffman Brain Phantom 

Figure 7(a): Filtered back projection reconstructed image of the 
digital Hoffman brain phantom. Top row is slices 1 through 5 ,  
starting from the left; and bottom row is slices 6 through 10. 7(b): 
15 iterations of PWLS reconstruction for ring+vertex data, 
initialized with the FBP image. 7(c): 15 iterations of PWLS for ring 
only data.J=2e-8 for both reconstructions. 
Reconstructed images of 10 slices of the digital Hoffman 
brain phantom, having 64x64 pixels on each slice, are shown 
in Fig. 7. For these images an average of 1 million counts are 
detected per slice of the ring detector. The FBP reconstructed 
image in Fig. 7(a) was reconstructed with ramp filter only. 
The images showed streak artifacts typical of FBP algorithm 
and poor image resolution. Reconstructed image with vertex 
data showed improved image resolution up to plane 6 which 
is at a distance of 7 cm from the surface of the vertex 
detector. 
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B. Uniform CR Bound Experiments 

a.: 

;a#. 
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Part I: Fig. 8 shows the bounds on standard deviation for a 
center hot pixel of plane 1 and plane 6. C was chosen to be 
the inverse of the regularization matrix in bound 
computations. Substantial improvement in performance was 
obtained when vertex data was added for plane 1. At bias 
gradient length of 0.6, the bound was reduced from 3.125 for 
the ring only case to 0.104 when vertex data is added. The 
improvement is less prominent for the edge pixels of plane 6. 
For bias gradient length greater than 0.55, there is no 
difference in performance between the two systems. 
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Figure 8: Uniform CR bound for of plane 1 hot center pixel and 
plane 6 hot edge pixel. Cis inverse of regularization matrix. 
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Figure 9(a): Ratio of sqrtmund) for a peripheral hot pixel of 
Ring+vertex to Ring only for planes 1, 3 and 6. 9 0 )  Ratio of 
sqrt(bound) for a central hot pixel of Ring+vertex to Ring only for 
planes 1, 3 and 6. Cis inverse of regularization matrix. 

Part II: For Part I1 of the bound experiments, for the 
phantom with hot spots at the periphery, addition of the 
vertex data set resulted in considerable improvement for 
estimation of regions of interest at plane 1 only. The ratio of 
the minimum achievable STD for the two cases is less than 
0.65, which is equivalent to a sensitivity increase of 2.8 
times. However, the rest of the planes only show marginal 

improvement when the vertex data set is added (Fig. 9(a)). 
The ratio of min. achievable STD is very close to 1 for plane 
3 and 6. For the phantom with hot spots close to the center, 
the bound on STD for all the planes is lower for the 
ring+vertex case when compared to the ring only case. Even 
at plane 6, the ratio of the minimum achievable STD for the 
two cases is approximately 0.84, which is equivalent to a 
40% increase in sensitivity. 

IV. CONCLUSIONS 
Using simulation experiments, we have shown that by 

adding the vertex data set to tomographic data set, the bias 
and variance trade-off characteristics are superior to standard 
tomographic data up to distances that are beyond 10 cm from 
the vertex detector where the advantage of the vertex view is 
offset by attenuation effect and decreased vertex resolution. 
The visual quality of the reconstructed images is also 
improved for the ring+vertex situation. 

Cramer-Rao bound type analysis has been applied very 
successfully in parameter estimation problems for comparing 
the, optimality of various estimators. In this work, we 
exploited the application of this type of analysis for 
performance comparison of medical imaging systems. The 
introduction of uniform Cramer-Rao bound allows the study 
of bias-variance and resolution-sensitivity trade-offs for 
biased image reconstruction algorithms. With this 
mathematical tool, we are able to examine the intrinsic 
benefits of these two data acquisition regimes relative to 
reconstruction accuracy as the data acquisition process is 
decoupled form the reconstruction algorithm. 

It is of interest to note that the vertex view provide the 
largest benefit to centrally located pixels that are the most 
poorly measured by the tomograph only. this is probably 
because peripheral pixels have reduced attenuation and are 
closer to the aperture for 25% to 30% of the projections so 
that vertex view yields only a marginal increase in 
information. 
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