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Abstract 
We present the results of combining volume imaging with 

the PENN-PET scanner with statistical image reconstruction 
methods such as the penalized weighted least squares (PWLS) 
method. The goal of this particular combination is to improve 
both classification and estimation tasks in PET imaging 
protocols where image quality is dominated by spatially- 
variant system responses and/or measurement statistics. The 
PENN-PET scanner has strongly spatially-varying system 
behavior due to its volume imaging design and the presence of 
detector gaps. Statistical methods are easily adapted to this 
scanner geometry, including the detector gaps, and have also 
been shown to have improved biaslvariance trade-offs 
compared to the standard filtered-backprojection (FBP) 
reconstruction method. The PWLS method requires fewer 
iterations and may be more tolerant of errors in the system 
model than other statistical methods. We present results 
demonstrating the improvement in image quality for PWLS 
image reconstructions of data from the PENN-PET scanner. 

IN'IJtODUCTION 

Statistical Image Reconstruction Methods. 
It is well recognized that statistical reconstruction 

algorithms, such as ML-EM, are particularly helpful in cases 
where measurement statistics dominate image quality [l]. To 
realize their full potential, these algorithms depend on accurate 
system models that describe the system response function and 
expected measurement statistics for a known object. 

Statistical iterative methods assume that the expected value 
of the projection data is given by y=E[y]  =Ax,  where 
x = (xi I i = 1,. . . , n] is a vector containing the n voxel values 
of the true image, y = { y j  I j = 1,. . .,m} contains the m 
measured projection values, and A = {Aij] is the m x n system 
matrix that gives the probability of a photon emitted from 
voxel i being detected in projection bin j .  The measured 
projection data, on the other hand, is a random vector drawn 
from the probability distribution function (PDF) given by an 
assumed statistical model. The ML-EM method assumes that 
the system model, A ,  accurately relates the PDF of the 
estimated image data to the Poisson-distributed sinogram data 
and seeks to maximize the log likelihood, possibly with the 
inclusion of an a priori regularizing term included via a 
maximum a posteriori (MAP) formulation of the estimation 
problem. 

The expected mewurement statistics are usually assumed to 
be Poisson, often with the inclusion of attenuation and other 
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Fig. 1. Geometry of the PENN-PET scanner. 

effects, and the system response function is usually assumed 
to spatially invariant. Neither of these assumptions are 
completely accurate in practice. An alternative approach is to 
assume Gaussian statistics and minimize a penalized weighted 
least squares (PWLS) objective function, rather than a Poisson 
likelihood objective function [2]. The PWLS objective 
function, essentially a regularized x2 functional, is given by, 

where CF = {oj I j = 1,. . . , m} are the standard deviations for the 
projection data and /3 controls the influence of the regularizing 
prior, U ( x ) ,  which is described elsewhere [6]. The standard 
deviations are estimated based on the corrections applied to the 
raw sinogram data during the processing steps prior to the 
image reconstruction, and the effect of weighting the 
differences between estimated and measured projections takes 
into account the statistical quality of the data. The effect of 
the correction steps on the weights are described below. 

Minimization of a PWLS objective function by successive 
over-relaxation (SOR) has been shown to be effective in cases 
where the data statistics are not Poisson [2 ] .  The SOR 
algorithm is a coordinate-desceat method where image pixels 
are estimated in place. In other words, @(xi)is minimized 
independently for each image pixel, i, in turn. This has the 
advantages of estimating the image data directly, and allowing 
for the straightforward application of a non-negativity 
constraint on the estimated image. 

The PENN-PET Scanner System Model 
The PENN-PET scanner at the University of Pennsylvania 

is a volume-imaging PET camera with an axial field of view 
(FOV) of 12.8 cm, a transverse FOV of 50 cm and gaps in 
coverage of -5 deg where the 6 planar detectors meet as 
illustrated in fig. 1 131. 

Since the scanner has no septa, data are acquired in 3D 
mode, with on-line rebinning of the 3D data into standard 2D 
sinograms via the single-slice rebinning (SSRB) algorithm 
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[4]. The gaps in the detector coverage lead to the missing 
sinogram regions shown in fig. 2. 

missing sinogram data 

Fig. 2 Missing sinogram data due to 5 O  detector gaps. 

The corrected sinogram data, yc, can be described by: 

where Y S S R B  is the SSRB rebinned sinogram data, b is the 
fitted scatter and randoms subtraction [3], a is the attenuation 
correction, and ei are efficiency corrections for i=l:  axial 
variation due to SSRB rebinning of volume acquisition, i=2: 
sampling pattern from on-line rebinning, and i=3: detector 
efficiency variations. 

For conventional filtered-backprojection (FBP) image 
reconstruction, the constrained Fourier space method (CFSM), 
based on consistency conditions in the Fourier transform of 
the sinogram data, is used to estimate the missing sinogram 
data [3,5]. 

Statistical reconstruction methods are easily adapted to 
missing data situations, especially if there are still more data 
samples than image pixels. These methods can directly 
incorporate constraints and prior information to partially 
compensate for the missing rays, unlike FBP, which must 
start with a complete data sinogram. The PWLS+SOR 
method is particularly well suited to reconstruct data from the 
PENN-PET scanner, as the weights associated with the 
regions of missing sinogram data can simply be set to zero. 
In addition, the PWLS+SOR may be more tolerant than other 
statistical methods of inaccuracies in the system model, such 
as those introduced by the SSRB rebinning and subsequent re- 
normalization steps, since it only takes into account the mean 
and variance of the sinogram data, and does not expect the 
entire probability distribution function (e.g. a Poisson 
distribution) to be characterized. 

ESTIMATION OF MISSING DATA 
To compare the effectiveness of the PWLS+SOR and 

CFSM+FBP methods in reconstructing the incomplete data 
from the PENN-PET scanner, images were reconstructed of a 
simulated cylinder. The simulation did not include any other 
effects than Poisson noise and detector gaps. The reduction in 
statistical noise is shown in figs. 3 and 4. The missing 
sinogram data are effectively compensated for with both 
methods, as there is sufficient frequency information to for the 
CFSM algorithm to estimate the missing sinogram data [ 5 ] .  

Fig. 3a. Simulated uniform Fig. 3b. Simulated uniform 
cylinder data reconstructed by cylinder data reconstructed by 
CFSM+FBP method. the PWLS+SOR method. 
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Fig. 4. Transverse line profiles through the center of the images 
(shown above) reconstructed by FE3P and PWLS. Pixels are 2 mm. 

Figures 3 and 4 also illustrate a reduction in the image 
noise for the PWLS+SOR method for similar image 
resolutions as the CFSM+FBP image, as shown by the 
profiles at the edges of the cylinder. 

POINT SPREAD FUNCTION 

Imaging a point source is more challenging than a cylinder 
as there are more missing spatial frequencies in the sinogram 
data. To investigate the effects on the PSF, a slightly off- 
center line was imaged in air and reconstructed without 
applying any corrections for scatter or attenuation. The 
reconstructed images were carefully matched between the two 
methods to have the same FWHM (11.8 mm) and FWTM 
(24.6 mm), which are typical of clinical whole-body imaging, 
and is the same resolution used in the phantom and patient 
images below. Surface plots are shown in fig. 5 along with 
plots are zeroed out to the FWTM level to show detail in the 
tails. 

The increased fluctuations in the tails for the CFSM+FBP 
method are evident in fig. 5. To quantify the magnitude of the 
fluctuations in the tails of the PSF, Fig. 6 shows the 
integrated counts for an ROI of a given diameter as a fraction 
of the total counts in the image. 

In the original image, the fraction approaches 1 more 
quickly for the CFSM+FBP method. This, however is due to 
the offsetting negative swings in the tails, and the 
PWLS+SOR PSF actually has tails of a smaller magnitude, 
as shown by applying the same measure to the image with the 
negative values truncated to zero. 
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Line source reconstructed by 
CFSM+FBP 

Line source reconstructed by 
PWLS+SOR 

CFSM+FBP image zeroed to 
the FWTM 

PWLS+SOR image zeroed to 
the FWTM 

20 iterations were used, although 10 iterations would likely 
have given similar results. 

In addition, images reconstructed using the ordered-subsets 
ML-EM (OSEM) algorithm [7] were included for comparison. 
For the OSEM images the system model A, did not take into 
account any non-ideal effects, such as attenuation correction. 
To control the bias/resolution trade-off, 8 subsets were used 
and the number of iterations was varied from 1 to 4, followed 
by post-reconstruction smoothing with a 3x3 Gaussian filter 
with a 8 mm FWHM. 

The PSF of a PET scanner (with or without detector gaps) 
is not well characterized by estimating a FWHM from a fitted 
Gaussian profile. This is especially true for asymmetric PSFs 
of off-center points. For our purposes resolution was 
calculated using, 

FWHM = d(FWHMi + FWHM+)/2, (2) 

Fig 5. Map of central image plane of a line source reconstructed by 
both methods with equal resolution as determined by FWHM and 
FWTM. The bottom pair show the same images set to zero out to 
the FWTM level in order to show detail in the tails of the PSF. 

where FWHMR and W H M T  are the radial and tangential 
FWHM directly measured using linear interpolation on 
profiles through the reconstructed line source. A similar 
measure was used to determine the FWTM. 
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Contrast was measured from ROIs of the same diameter as 
the cold cylindrical insert placed over the background and the 
cold insert (determined from a high statistics scan), and 
calculated as the ratio (background - cold)/background. 

Noise was calculated as the standard deviation of the 
background or cold ROIs normalized to the background level. 
The validity of this type of measurement is discussed below. 

Resolution versus Noise 
Fig. 7 shows no significant difference between the 

CFSM+FBP and PWLS+SOR methods. This result is 
discussed in more detail below. 

I 
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RESOLUTION, CONTRAST, AND NOISE C m 
To compare both the effects of the reduced tails in the PSF 

with the expected noise reduction properties of the 
PWLS+SOR method, a cylinder with a hot line source (off- 
center), a warm background and a cold cylindrical insert was 
imaged on the PENN-PET scanner to simultaneously measure 
resolution, contrast, and noise. The phantom was scanned for 
two different imaging conditions, one of low statistics (-50k 
events per image slice), and one or moderate statistics (-250k 
events per image slice). The images were reconstructed over a 0 5 10 15 20 25 30 35 40 45 50 
range of parameters to control the usual bias/resolution trade- Resolution fmml as calculated bv ean. f21 

. I  I I \ I  

off. For the CFSM+FBP method this was done by setting the 
cut-off frequency of the apodizing Hamming window to 2.0, 
1.0, 0.67, 0.5, and 0.4 of the Nyquist frequency (0.25 mm-I), 

Fig. 7. Background noise vs. resolution as measured by the 
FWHM and FWTM of a line in a warm cylinder. 

while for the PWLS+SOR method this was done by 
controlling the influence of the regularizing term by setting 
the parameter p in equation (1) to 2-4, where q = 14.0, 12.8, 
9.0, 7.0, 5.9, and 4.7. For the SOR minimization algorithm, 

Contrast verSuS Noise 
Fig. 8 shows the contrast VS. noise for the background and 

cold regions for the low and moderate statistics cases. The 
OSEM method shows the expected improvement for the 
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contrastlnoise ratio as compared to the CFSM+FBP method in 
the cold ROI regions. In comparison, the PWLS+SOR 
demonstrates an improved contrastlnoise ratio in all cases, 
likely due to the combination of incorporation of the statistics 
in  the data and the reduction in the tails of the PSF 
demonstrated above. 
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Fig. 8. Contrast vs. noise for two different imaging conditions. 
OSEM (without proper system model) is also included. 

Contrast versus Resolution 
To directly compare the effects the extended tail of the 

PSFs on image quality, the contrast vs. resolution for the two 
methods was compared. Fig. 9 explains the apparent difference 
in comparing resolution vs. noise (fig. 7) and contrast vs. 
noise (fig. 8), by showing an improved contrast of the 
PWLS+SOR method over wide range of resolutions. 
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Fig. 9. Contrast vs. resolution as measured from a cylinder with a 
hot line source, a warm background and a cold insert. 
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APPLICATION TO WHOLE BODY IMAGING 

Phantom Study 
An anthropomorphic torso phantom with hot (10: 1 and 3: 1 

ratios of activity to background concentrations, 1 cc each) and 
a cold sphere insert (16 cc) was imaged to examine the 
reduction in noise for a fixed resolution identical to that used 
in the PSF study above. Attenuation correction was 
performed using a singles transmission source [8]. 

CFSM+FBP PWLS+SOR 

11 cc (1O:l )  16 cc 

I hot =here I I  I 
~~ 

Transverse Transverse 

77 

I I 

Frontal Frontal 

Fig. 10. Images from a anthropomorphic phantom which has hot 
and cold sphere inserts. Imaging and reconstruction parameters 
are similar to those of the whole-body images in figs. 11 and 12. 

Figure 10 shows transverse and frontal section through 
images reconstructed using both methods. Images were 
reconstructed with identical resolution. Imaging and 
reconstruction parameters are similar to those of the whole- 
body patient study described next to give a basis for comparing 
the patient images. The reconstruction parameters are typical 
for whole-body oncology imaging, with the exception of 
using no axial smoothing to allow for a more direct 
comparison of the two algorithms. 

Measured contrast and standard deviation values are given 
in table 1. Contrast was measured from ROIs of the same 
diameter as the spherical inserts placed over inserts (determined 
from a high statistics scan), and calculated as the ratio 
lbackground - coldvbackground. Pixel standard deviation was 
averaged from large ROIs placed in each of the 'lung' regions 
of the phantom. 
Table 1. 
regions expressed as a percentage of the background. 

Contrast of spheres and standard deviation of lung 

Contrast Std. dev. 
sphere 1 cc 1 cc 16cc 

hot hot cold 
(1O:l) (3:l) 

Ideal contrast 9 2 1 .o 
CFSM+FBP 6.4 1.6 0.76 -31% 
PWLS+SOR 7.2 1.8 0.80 - 20% 



Table 1 shows higher contrast ratios for the hot and cold 
spheres and a lower pixel standard deviation in the lung 
regions of the phantom. 

Patient Study 

A whole body study for breast cancer recurrence with 
typical imaging (approximately 200k counts per plane) and 
reconstruction parameters. The CFSM+FBP and PWLS+SOR 
images have matched image resolution as described above. 

I "I 
Fig. 11. Frontal and transverse views of a CFSM+FBP 
reconstruction of a whole body oncology study. Cross hairs are 
centered on a metastasis from a primary breast tumor. 

Fig. 12. PWLS+SOR images of the same whole body oncology 
study shown in fig. 11. 

While it is not possible to make any conclusions about 
improved tumor detectability, figs. 11 and 12 show a reduction 
in statistical noise for PWLS+SOR compared to CFSM+FBP 
at the resolution shown above (FWHM=11.8 mm), and 
possibly an improved contrast . 

DISCUSSION 

The relative reconstruction times of the algorithms are 
given in table 2 and show that the ratio in reconstruction 
times between CFSM+FBP and PWLS+SOR is only -1:3. 
For the 128-plane whole-body image in fig. the reconstruction 
time (for 10 iterations of SOR) is only 10 min. on an Alpha 
600 51333 workstation. 
Table 2. Relative reconstruction times 

Algorithm Relative reconstruction time 

FBP 1 (by definition) 
CFSM+FBP 2.0 
PWLS+SOR 
OSEM 

6.5 (for 10 iterations of SOR) 
4-8 (dep. on num. of iterations) 

~ 
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Images reconstructed with PWLS+SOR have favorable 
noiselcontrast tradeoffs compared to those reconstructed with 
CFSM+FBP due to (i) reduction of the tails in the PSF and 
(ii) reduced propagation of statistical noise. At this point it is 
not clear what the relative gain from each factor is. 

The tails in the PSF are reduced by PWLS+SOR likely 
because of positivity constraint and applying a priori 
smoothness constraints in image space. A caveat is that the 
PSF of PWLS+SOR method may have a different shape in a 
warm background as the positivity constraint will have less 
effect. The smoothness constraint, however, will still be 
applied in image space. The OSEM algorithm compared 
favorably the to CFSM+FBP method in cold regions, but less 
well in warm regions. It should be recalled, however, that an 
accurate system matrix was not used in this implementation of 
OSEM. 

While noise calculated as the standard deviation of the 
background or cold ROIs does not represent the true pixel 
variance, it can to some extent be considered indicative of 
trends in image noise. The results obtained here are consistent 
to a simulation study (for a scanner without detector gaps) 
where true pixel variance was calculated from multiple 
realizations and showed that PWLS+SOR had improved bias- 
noise trade-offs in comparison to FBP [2]. 

The incorporation of statistical information into the 
PWLS+SOR method could be done by other statistical 
methods, such as OSEM. Given the imperfect corrections that 
always occur in practice, hoewever, a statistical model that is 
insensitive to departures from the assumed shape of the data 
distribution is probably preferable. 
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