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Abstract- Transmission scans are necessary for estimating the 
attenuation correction factors (ACFs) to yield quantitatively accu- 
rate PET emission images. To reduce the total scan time, post- 
injection transmission scans have been proposed in which one can 
simultaneously acquire emission and transmission data using rod 
sources and sinogram windowing. However, since the post-injection 
transmission scans are corrupted by emission coincidences, accu- 
rate correction for attenuation becomes more challenging. Con- 
ventional methods (emission subtraction) for ACF computation 
from post-injection scans are suboptimal and require relatively long 
scan times. We introduce statistical methods based on penalized- 
likelihood objectives to compute ACFs and then use them to recon- 
struct lower noise PET emission images from simultaneous trans- 
mission/emission scans. Simulations show the efficacy of the pro- 
posed methods. These methods improve image quality and SNR of 
the estimates as compared to conventional methods. 

I. INTRODUCTION 
For accurate PET emission images, one must correct 

for effects of attenuation, or absorption of the gamma 
photons within the patient being imaged. The effects 
of attenuation on the final emission image quality are 
particularly severe in thorax imaging, since the larger di- 
mension of the chest decrease the survival probability of 
photon pairs to  as low as 2%. There is potential new clin- 
ical applications for performing PET of the thorax, such 
as detection of breast cancer and lung tumors. Hence, the 
improvement of attenuation correction methods is getting 
more important. 

The development of ring and rod sources for PET 
transmission scans made it possible to  measure attenu- 
ation properties of a patient directly. Currently, atten- 
uation correction factors (ACFs) are computed from a 
transmission scan that precedes the radiotracer injection, 
thereby increasing total scan time. Reducing the scan 
time is crucial to  increase the patient throughput and to 
make attenuation corrected total body PET scans possi- 
ble. For this purpose, post-injection measurements have 
been proposed that use rotating rod sources and sino- 
gram windowing to simultaneously acquire transmission 
and emission sinograms. Simultaneous scans also elimi- 
nate the problem of misregistration between emission and 
transmission reconstructions. 

Sinogram windowing is performed by taking a nar- 
row window in the sinogram domain around the detec- 
tor pair locations that are collinear with the rod source. 
This window captures the transmission coincidences, and 
is called the transmission window. There are also true 
emission events in the transmission window that must 
be corrected. The remaining sinogram bins, called the 
emission window, contain emission coincidences, scat- 
tered and random coincidences. The random events in 
the emission window are due both to emission and trans- 
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mission events and are generally higher count as com- 
pared to a single emission scan [l]. 

Conventional methods of reconstruction used in simul- 
taneous scans are suboptimal. Simple subtraction of 
emission data from the transmission sinogram and FBP 
reconstruction of emission image ignore the Poisson na- 
ture of the measured data. Although these methods give 
satisfactory results for brain scans [2], they perform much 
worse in the thorax where attenuation is more nonuni- 
form and its correction is more important. This paper 
presents Maximum Penalized Likelihood (MPL) meth- 
ods to improve the quality of the image reconstructions 
in simultaneous transmission/emission scans. 

We compare conventional and statistical methods by 
use of bias versus standard deviation plots. We also 
present reconstructed images for comparison. The effects 
of resolution mismatch between attenuation and emission 
images are also determined. 

11. THE MODEL 

Let X = [XI,. . . , A,] denote the vector of unknown 
emission counts originating from image pixels, and p = 
[pl , . . . , p,] be the vector of linear attenuation coefficients 

and yE = [yf , . . . , y:] denote the vector of measured 
counts in transmission and emission window sinograms 
respectively. We assume that the y? and y," are realiza- 
tions of statistically independent random variables having 
Poisson distributions and with expectations y? and yf: 

(having units of inverse length). Let yT = [yr ,  . . . , yN] T 

for i = 1. .  . N ,  and where 

V V 

j=1 j=1 

The a j j  contain factors representing the tomographic 
system geometry, scan time, detector efficiencies, and 
dead time correction factors. The gij have units of 
length and represent attenuation geometry. Here bi are 
the blank scan counts, pi and li are the projections of 
true emission and attenuation parameters, TT and r," are 
background events in their respective windows, ICT is the 
fraction of emission counts in the transmission window. 

Our final goal is to estimate X from the two set of 
measurements. But, an estimate for the attenuation map 
p is also found in the process for statistical reconstruction 
methods. 
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111. RESOLUTION MATCHING 
Generally, for reducing noise in the transmission scan, 

sinogram smoothing is employed. Even though this re- 
duces the noise in the attenuation correction factors, it 
introduces a resolution mismatch between two scans. It is 
well known that when the transmission data is smoother 
than the emission data, the outcome is serious artifacts 
at the edges which can be misinterpreted as pathological 
changes [3], [4]. Particularly, the photon activity at or 
around the edges of the attenuation map will be underes- 
timated at the high attenuation side, and overestimated 
at the low side, an artifact caused by oversmoothed at- 
tenuation map. 

We found that using smooth ACFs in statistical meth- 
ods causes a similar effect on the emission image, as might 
be expected. Since, we include a biased (blurred) esti- 
mate of survival probabilities e-'* in the emission data 
model, this bias propagates to  the final image, causing 
visually disturbing images. This is illustrated in Figure 
1. 

It is possible to  overcome the mismatch problem in 
non-statistical reconstructions by smoothing the emission 
sinogram to the resolution of the attenuation correction 
factors [3]. However, when one uses statistical meth- 
ods, the same procedure cannot be done, since it will 
destroy the Poisson nature of the data. Consequently, 
for the statistical methods, it is necessary to use atten- 
uation reconstructions having as small bias as possible. 
This suggests use of nonquadratic penalties which result 
in sharper edges in the attenuation map [5]. The per- 
formance of statistical methods may degrade faster than 
FBP with use of smoother ACFs. 

I v .  METHODS OF RECONSTRUCTION 

A .  Attenuation Map 
To precisely estimate the attenuation map, we need 

to get an initial estimate of emission contamination in 
the transmission window. Conventional methods esti- 
mate this contamination from either a preceding emission 
scan or the emission window measurements in the simul- 
taneous scan. Then, the emission contamination estimate 
is subtracted from the transmission measurements, or in- 
cluded in the statistical model depending on the method 
to  be used for ACF estimation. 

We used three different methods for ACF computation, 
described as follows. 

A. l  RAW 
For this type, we ignore the emission contamination in 

the transmission window, and divide transmission mea- 
surements to  blank scan data to yield the survival prob- 
abilities along lines of response. We, then smooth with a 
2-D gaussian kernel in the sinogram domain to achieve a 
target resolution: 

h 

- - smooth { (yT - $ ) / b i }  (3) 
Note that we do not need to  obtain the image domain 
attenuation map for this method. If we need to refer to  
ji for this method, we find it by: 

~ 
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(4) fi=fbp{-log(e-'.)}, 

where the FBP is performed by a ramp filter with cutoff 
at Nyquist frequency. The back projection is done pixel- 
driven with linear interpolation in the radial direction of 
the sinogram domain, so that no additional blurring is 
introduced. 

A.2 SUBTRACTION (SUB) 
We subtract the emission contamination estimated by 

k ~ ( y ~  - r E )  and randoms estimate from transmission 
data and divide by blank scan. Then, the resulting sino- 
gram is 2-D smoothed to achieve various resolutions. In 
other words: 

h 

e-'. = smooth { (yT - rT - kT(yf - $ ) ) / b i }  (5) 

Similarly, the attenuation map estimate is found using 
FBP with a ramp filter. 

A.3 MPL 

To use a statistical penalized likelihood method to  re- 
construct the attenuation map, we estimate the emission 
contamination in the transmission window from yE and 
include it in the statistical model for yT as part of the 
background events. Then, we estimate p using the pe- 
nalized likelihood objective function for the transmission 
problem: 

$ = a'gmpa@(P; $1, (6) 

YT) = q K  Y*) - P%), (7) 
where L(p; yT) is the log-likelihood function given by: 

N 

~ ( p ;  yT) = Cy? log(bie-"(p) + - (bie-'*(p) + FT), 
(8) 

i = l  

where F T  = TT + k ~ ( y E  - ~ f )  and the objective includes 
a roughness penalty function, given in general by: 

Ordinarily wjk = 1 for horizontal and vertical neigh- 
boring pixels, wjk = 114 for diagonal neighboring pix- 
els, and wjk = 0 otherwise. The parameter ,8 controls 
the level of smoothing. In our reconstructions, we adopt 
the modification described in [6] to achieve more uniform 
spatial resolution. 

The potential function 1c, is a measure of similarity 
between pixels in the reconstructed image. For the 
quadratic penalty (MPL-Q), we use: 

and for non-quadratic penalty reconstructions (MPL-N) , 
we focus on one of the penalties proposed in [5]: 



The latter penalty approaches the quadratic penalty as 
6 --i CO, whereas for finite values of 6, different degrees of 
edge preservation can be achieved. 

The MPL methods can also be called “reprojected” 
ACF computation since the line integrals are found by 
projecting the attenuation maps, or fi(ji) = E,”,, gijjij. 
These projections are then used to  find the,ACFs. 

B. Emission Image 

least) two alternatives: FBP and MPL reconstructions. 

B.l FBP 

We smooth the randoms-corrected emission measure- 
ments yE - rE with a gaussian 2-D kernel to  achieve 
the same resolution as the Si gf e-** in the sinogram 
domain. The kernel size is determined from the best 
gaussian match to  the survival probabilities S. After at- 
tenuation is corrected by division, the emission image is 
reconstructed by FBP with a ramp filter. In other words: 

To reconstruct the emission image, there are again (at 

h 

integrals with 3 mm center to  center spacing, which is 
an approximation to ideal line integral that accounts for 
finite detector width. 

We set the number of counts of transmission scan to  
2 million and of emission scan to  1 million. The ran- 
doms rate were 10% in both scans. The randoms rate in 
emission window is usually higher than lo%, but it is pos- 
sible to  reduce it by using weaker rod sources [l]. Emis- 
sion scan can also be done separately after removing the 
rod sources in which case the T+E scan is termed post- 
injection transmission scan. This does not change our 
formulation if we assume no patient motion in between 
these two scans and consider the radioactive decay. De- 
tector efficiencies and blank scan sinograms were assumed 
to be uniform. Deadtime was ignored in the simulations. 
There was emission contamination of 10% ( k ~ )  in the 
transmission window. 

We generated M = 100 realizations of pseudorandom 
Poisson transmission and emission measurements accord- 
ing to  (l), then reconstructed using previously mentioned 
methods. For the MPL reconstructions, we used the 

smooth(yF - r f )  
Si 

grouped ascent algorithm for transmission [7], and SAGE 
p i  = 9 (lo) algorithm for emission reconstructions [8]. 

i = fbp {$} . (11) 

B.2 MPL 

We include the survival probability estimates &i in the 
statistical model for emission data as part of the calibra- 
tion factors. Then, the penalized likelihood problem can 
be formulated as: 

where the log-likehood function is, 

B. Results 
We present the average bias versus standard deviation 

estimate graphs for both attenuation and emission image 
reconstructions in Figures 2, 3 and 4. In these figures, 
the horizontal axis values are obtained from the sample 
mean image of M reconstructions. We take the average 
of absolute differences between the true image and the 
sample mean within a region of interest (W) .  The values 
are normalized by the average value of the true image 
in that region. Let Bn,n = 1..M denote the reconstruc- 
tions obtained from M realizations, and let e denote their 
sample mean, then: 

(13) 
and R(X) is the quadratic penalty function (MPL-Q). 

We again use a modification of the weights W j k  to 
achieve near-uniform resolution [6]. The parameter P is 
varied to  obtain different levels of smoothing. 

V. PERFORMANCE SIMULATIONS 

is the estimate of the average bias. We choose the win- 
dow W to  be a central rectangular region containing both 
lungs for bias estimates. 

The vertical axis values are the average standard de- 
viation estimate found from M realizations in another 
region of interest, i.e: 

A .  The Phantom and The Parameter Values 
To compare different methods, we used a synthetic at- 

tenuation map and emission distribution shown in top 
left corners of Figures 5 and 6 as ptrue  and A t r u e .  The 
attenuation map represents a human thorax cross sec- 
tion with linear attenuation coefficients 0.16 cm-’, 0.096 
cm-l, 0.025 cm-l, for bone, soft tissue and lungs, respec- 
tively. The emission image represents sample activity in 
the same cross section with values 1, 2 and 4 for lungs, 
soft tissue and heart, respectively. The pixel size is 4.22 
mm. We simulated PET transmission and emission scans 
with 160 radial bins and 192 angles uniformly spaced over 
180’. The aij factors corresponded to  6 mm wide strip 

1 .  M 

The window W for the attenuation map is the same as 
the bias window, whereas for emission standard deviation 
estimates, we choose a smaller region around the cardiac 
activity area. 

The plot in Figure 2 clearly indicates that both MPL 
methods have better performance than the subtraction 
method for transmission processing. The raw estimate is 
severely biased as expected. Also, MPL-N has a better 
bias-variance trade-off than MPL-Q reconstruction. Non- 
quadratic penalties appear to be preferable for transmis- 
sion reconstruction. 
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In Figure 4, we used an emission MPL-Q reconstruc- 
tion with fixed p = 26 giving a resolution of about 12 
mm. Thus, the difference in the bias values are only due 
to different transmission reconstructions. The bias in- 
creases as we use smoother attenuation maps, but the 
standard deviation estimates do not go down as much. It 
can be seen that MPL-N transmission followed by MPL- 
Q emission reconstruction seems to  give the best result. 

Figure 3 presents a similar plot for FBP emission re- 
constructions. In this case, the resolutions of emission 
data are matched to  attenuation resolution and no further 
smoothing is done. Thus, actually initial points on the 
graph are very noisy which results in the strange curves 
in the plot. This is due to  the fact that, even the mean 
images corresponding to  these reconstructions are noisy, 
which show up in the bias estimate. Actually, in the 
ideal case, we should put error bars to show the accuracy 
of our bias and standard deviation estimates. However, 
since the resolutions are matched, there should not be 
any contribution from systematic artifacts at the edges 
unlike MPL-Q estimates. The bias values in this case 
are proportional to  FWHM values for reasonably smooth 
reconstructions. The plot indicates that FBP method 
is inferior to  MPL-Q for low values of bias. But, for 
higher values of bias (2 13%) , FBP seems comparable 
to MPL-Q because of the resolution mismatch problem 
in the statistical method. 

We also present sample reconstruction images from a 
single realization. In Figure 5, the attenuation maps can 
be observed. The MPL-N looks much better than MPL-Q 
or SUB reconstructions. Here, note that the resolutions 
of the last two estimates are almost matched, but the first 
one is sharper at  the edges. Even then, MPL-N looks less 
noisy. 

Emission images are presented in Figures 6 and 7. 
Overall, MPL-Q estimates look better qualitatively than 
FBP ones which contain disturbing streak artifacts. The 
reconstructions with RAW ACFs have systematic nega- 
tive bias. Visually, the best one is the combination of 
MPL-N for attenuation and MPL-Q for emission, which 
seems to  reduce the noise inside the lungs appearing as 
hot spots in other reconstructions. This noise is appar- 
ently coming from noisy transmission data, which is suc- 
cessfully reduced in the MPL-N attenuation map esti- 
mate. 

VI. CONCLUSION 
We investigated the use of statistical image reconstruc- 

tion methods for simultaneous transmission/emission 
PET imaging. We compared the conventional methods 
with statistical ones, as well as hybrid ones. The MPL 
reconstructions are shown to outperform conventional 
methods for reasonable values of bias. Non-quadratic 
penalties yield better results than quadratic ones since 
they allow for sharp edges and yet still reduce the noise. 
We have used MPL-N only for transmission. Its use for 
emission may improve the image quality further. 

In this work, we only used conventional methods with 
linear smoothing in the sinogram domain. For future 
work, the statistical methods should be compared with 

FBP with segmentation of the attenuation map. We still 
suspect that statistical MPL methods will outperform 
that approach, since segmentation algorithms generally 
misclassify important number of pixels due to  noise. But, 
some sort of soft-segmentation might work. Meanwhile, 
we are in search of methods to obtain sharper but less 
noisy reconstructions of attenuation maps to  further re- 
duce the transmission component of the image noise. 

The next step in this area is to use the first emission im- 
age to estimate the emission contamination in the trans- 
mission window and reconstruct p and X in alternation 
until more satisfactory results are obtained. Another al- 
ternative we are investigating is to  jointly estimate p and 
X from the two set of measurements yE and yT. 

20 40 60 80 100 120 

(a) 

(b) 

Fig. 1. The artifacts casued by mismatch of resolutions. At- 
tenuation is reconstructed from noiseless data using quadratic 
penalty with logz 0 = 7.6 resulting in a psf of FWHM 14 mm. 
The emmission image is reconstructed again from noiseless data 
using quadratic penalty with logz 0 = 3.0 yielding a psf of 
FWHM 6 mm. 

Attenuation Reconstructions 

2 4 6 
%bias estimate 

I 

Fig. 2. Bias vs standard deviation trade-offs for attenuation map 
reconstructions. Labels indicate different reconstruction meth- 
ods. 
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Fig. 3. Bias vs standard deviation trade-offs for FBP emission 
reconstructions. Labels indicate the attenuation map that is 
used. 

Emission MPL-Q reconstructions 

Fig. 4. Bias vs standard deviation trade-offs for quadratic penalty 
emission reconstructions. Labels indicate the attenuation map 
that is used. 
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