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Abstract

In PET, usually the data are precorrected for acciden-

tal coincidence (AC) events by real-time subtraction of the

delayed window coincidences. Randoms subtraction com-

pensates in mean for AC events but destroys the Poisson

statistics. Furthermore, for transmission tomography the

weighted least-squares (WLS) method leads to systematic

biases, especially at low count rates. We propose a new

\shifted" Poisson (SP) model for precorrected PET data,

which properly matches the �rst and second order moments

of the measurement statistics. Using simulations and an-

alytic approximations, we show that estimators based on

the \ordinary" Poisson (OP) model for the precorrected

data lead to higher standard deviations than the proposed

method. Moreover, if one zero-thresholds the data before

applying the maximization algorithm, the OP model re-

sults in systematic bias. It is shown that the proposed SP

model leads to penalized-likelihood estimates free of sys-

tematic bias, even for zero-thresholded data. The proposed

SP model does not increase the computation requirements

compared to OP model and it is robust to errors in the

estimates of the AC event rates.

I. Introduction

Accidental coincidence (AC) events are a primary source

of background noise in PET measurements. AC events oc-

cur when photons that arise from separate annihilations are

mistakenly registered as having arisen from the same anni-

hilation. In transmission scans the photons that originate

from di�erent transmission sources (rod or sector sources

rotating around the patient) cause AC events. Due to

rod masking, ratio of these AC events to \true" events

are usually small in transmission scans compared to emis-

sion scans. However the e�ect of AC events is signi�cant

for regions of high attenuation coe�cients, because projec-

tions through the regions of high attenuation coe�cients

result in low true coincidence rates. These low count rates

can become comparable to AC rates. In a conventional

PET scan, the data are precorrected for AC events by

real-time subtraction of the delayed-window coincidences.

Real-time subtraction of delayed window coincidences [6]

compensates in mean for AC events but destroys the Pois-

son statistics. To avoid this problem, one needs to main-

tain the transmission and randoms measurements as two

separate sinograms [7]. However even if a PET system

enables one to collect randoms (delayed coincidences) sino-
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gram separately, this process doubles the storage space for

the acquired data. So in practice most PET centers collect

and archive only the randoms precorrected data.

Although our analysis and proposed model applies to

both emission and transmission tomography, in this paper

we focus on transmission tomography. We argue that for

transmission scans, the WLS method and the ML method

based on ordinary Poisson (OP) model lead to systematic

bias and higher variance, respectively. Thus, we propose a

\shifted" Poisson (SP) model which matches both the �rst

and second-order moments of the model to the underlying

statistics of the precorrected data. The corresponding log-

likelihood function is shown to have better agreement with

the exact log-likelihood function than the WLS and OP

objective functions. We performed 2D simulations which

showed that the proposed SP model yields lower variance

in the reconstructed images than the OP model. Another

observation was that the WLS method leads to unaccept-

ably high systematic bias, especially for low count rates.

Lastly, we investigated the e�ect of using estimates of AC

rates. The SP estimator is found to be robust to the errors

in the estimates of AC rates. The SP model has similar

computation requirements for the maximization algorithm

as that of the OP model.

II. Measurement Model

In a conventional PET scan, the data are precorrected for

AC events by real-time subtraction of the delayed-window

coincidences [6]. The system detects coincidence events

during two time windows: \prompt" window and \delayed"

window. For each coincidence event in the prompt window,

the corresponding sinogram bin is incremented. The statis-

tics of these increments should be well approximated by a

Poisson process. However, for coincidence events within

the second delayed window, the corresponding sinogram

bin is decremented, so the resultant \precorrected" events

are not Poisson. Since prompt events and delayed events

are independent Poisson processes, the precorrected mea-

surements correspond to the di�erence of two independent

Poisson random variables with variance equal to the sum

of the means of the two random variables. In other words,

randoms subtraction compensates in mean for AC events,

but it also increases the variance of the measurement by

an amount equal to the mean of AC events.

Let y = [y

1

; : : : ; y

N

]

0

denote the vector of precorrected

transmission scan measurements. The precorrected mea-

surement for the nth coincidence detector pair is:

y

n

= y

n;p

� y

n;d

(1)



where y

n;p

and y

n;d

are the number of coincidences within

the prompt and delayed windows, respectively. Let � =

[�

1

; : : : ; �

p

]

0

denote the vector of unknown linear attenu-

ation coe�cients. We assume that y

n;p

and y

n;d

are sta-

tistically independent realizations of the random variables

fY

n;p

g

N

n=1

and fY

n;d

g

N

n=1

having Poisson distributions with

means �y

n;p

and �y

n;d

respectively as:

�y

n;p

(�) = b

n

e

�l

n

(�)

+ r

n

(2)

�y

n;d

= r

n

(3)

where l

n

(�) =

P

p

j=1

a

nj

�

j

is the total attenuation between

nth detector pair. The a

nj

� 0 factors have units of length

and describe the tomographic system geometry. The b

n

>

0 factors denote the blank scan counts and the r

n

factors

denote the mean of AC events.

Since y

n;p

and y

n;d

are statistically independent:

Efy

n

g = �y

n

= �y

n;p

(�)� �y

n;d

= b

n

e

�l

n

(�)

;

Varfy

n

g = �y

n;p

(�) + �y

n;d

= b

n

e

�l

n

(�)

+ 2r

n

:

Thus the precorrected measurements (y

n

's) are clearly not

Poisson distributed. One simple approach to image recon-

struction would be to assume that the measurements have

a Poisson distribution with means �y

n

(�), even though this

model is incorrect we refer to this approach as the \ordi-

nary Poisson" model. To illustrate the inaccuracy of the

ordinary Poisson measurement model for y

n

's, we have per-

formed a small Monte Carlo simulation similar to [2]. The

circles in Fig. 1 show a simulated histogram for y

n

gener-

ated by a pseudo-random number generator in accordance

with the distribution described above (for 50,000 realiza-

tions) where �y

n;p

= 8 and �y

n;d

= r

n

= 1 (corresponding to

12.5 percent randoms).
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Fig. 1. Comparison of a) Gaussian, b) ordinaryPoisson and c) shifted

Poisson models (-) (with the moments matched to the moments

of precorrected measurements), with the empirical distribution

(o) of precorrected measurements.

Fig. 1a shows the approximation based on Gaussian dis-

tribution model with mean (�y

n

) and variance (�y

n

+ 2r

n

).

Fig. 1b shows the ordinary Poisson (OP) model where ap-

proximation is based on a Poisson model with mean (�y

n

),

the ideal mean. Lastly, Fig. 1c shows the approximation

based on a Poisson model with mean (�y

n

+ 2r

n

) and then

shifted by �2r

n

. The resultant approximation corresponds

to a model with mean and variance that match both �rst

and second order moments of y

n

. The last approxima-

tion corresponds to our proposed \shifted" Poisson (SP)

model and it has the best agreement with the precorrected

measurement y

n

. For large means, the shifted Poisson dis-

tribution is also approximately Gaussian by the Central

Limit Theorem. However in transmission tomography the

the projections through high attenuation regions (which

is usually the region of interest) have lower count rates,

and the above example illustrates that for low count rates

the Gaussian approximation is less accurate than the SP

model.

III. Objective Functions

Let y

n

given in (1) be a realization of statistically in-

dependent random variables fY

n

g

N

n=1

. The exact log-

likelihood for � can be formulated using total probability:

L(�) = logP (Y = y;�)

=

N

X

n=1

log

0

@

1

X

m=b�y

n

c

+

�y

n;p

(�)

(y

n

+m)

(y

n

+m)!

�y

(m)

n;d

m!

1

A

�(�y

n;p

(�) + �y

n;d

): (4)

This exact log-likelihood function contains in�nite summa-

tions, so practically one cannot compute the exact value.

In the light of the Monte Carlo simulation that we have

performed in previous section, one can develop di�erent

approximations to the exact log-likelihood function. We

describe three approximations below.

The quadratic approximation to the exact log-likelihood

function results in the Weighted Least Squares objective

function L

WLS

(�) [8]:

L

WLS

(�) = �

1

2

N

X

n=1; y

n

>0

(l

n

(�)�

^

l

n

)

2

1

�̂

2

n

; (5)

where

^

l

n

= log (b

n

=y

n

) is the method-of-moments estimate

of the line integral of the attenuation l

n

(�) and the nth

weighting factor �̂

2

n

= (y

n

+ 2r

n

)=y

2

n

is an estimate of the

variance of

^

l

n

(y

n

) based on a second-order Taylor expan-

sion around

^

l

n

(�y

n

). This weighting is critical for the WLS

method. The errors corresponding to projections with large

values of y

n

are weighted more heavily. These projec-

tions pass through less dense objects and consequently have

higher SNR values.

The ordinary Poisson model for the precorrected data

y

n

with mean �y

n

(�) = b

n

e

�l

n

(�)

leads to the OP objective

function:

L

OP

(�) =

N

X

n=1

y

n

log(b

n

e

�l

n

(�)

) � (b

n

e

�l

n

(�)

); (6)



disregarding constants independent of �.

In the light of Fig. 1c, a better approach, which matches

both the �rst and the second order moments

2

, is to approx-

imate the quantities (y

n

+ 2r

n

) as realizations of indepen-

dent Poisson random variables with means (�y

n

(�) + 2r

n

).

This model leads to our proposed SP objective function:

L

SP

(�) =

N

X

n=1

h

n

(l

n

(�)); (7)

where

h

n

(l) = (y

n

+ 2r

n

) log(b

n

e

�l

+ 2r

n

)� (b

n

e

�l

+ 2r

n

):

(It can be shown that L

WLS

(�) corresponds to the summa-

tions of second order Taylor series expansion of h

n

(l

n

(�))

about h

n

(

^

l

n

) where

^

l

n

= log (b

n

=y

n

).)

Fig. 2 compares the actual log-likelihood function and

the approximations for noiseless data as a function of a

single projection across the reconstructed image for 5%

randoms rate. L

SP

(�) agrees fairly well with the exact

log-likelihood L(�); however L

WLS

(�) and L

OP

(�) depart

signi�cantly from the exact log-likelihood function. Note

that all the curves have the maximum at the same point

^

l

n

= log (b

n

=y

n

). This is due to the fact that all estima-

tors works perfectly with the noiseless data (i:e: y

n

= �y

n

).

For noisy data the maximum of each curve will exhibit a

variation around its mean value. We also observed that,

for noisy data L

SP

(�) agrees with the exact log-likelihood

L(�) better than the other models.

0 0.5 1 1.5 2 2.5 3 3.5 4
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Projection Density  (l)

L
o
g
 L

ik
e
lih

o
o
d

−  Exact Log−Likelihood

+  Quadratic Model

*  Poisson Model  

o  Shifted Poisson Model

Fig. 2. Comparison of exact log-likelihood function with objective

functions of di�erent models for a single projection ray. The

proposed shifted Poisson model agrees with exact log-likelihood

better than the other models.

2

Key Di�erence: Both L

WLS

and L

SP

match two moments, but

in WLS the 2

nd

moment is \�xed" and it is the moments of

^

l

n

rather

than y

n

.

IV. Bias-Variance Analysis

To analyze the bias and variance of each estimator an-

alytically, we used the analytic approximations in [4]. For

this purpose we considered a highly simpli�ed version of

transmission tomography where the unknown is a scalar

parameter. This simpli�ed problem provides insight into

the estimator bias and variance without the undue nota-

tion of the multi-parameter case. Because of the space

considerations we are not able to give detailed formulas for

mean and variance approximations of di�erent estimators.

Using Cauchy-Schwarz inequality to the approximations of

variances, we have shown analytically that SP estimator

yields a lower variance than the OP estimator [9]. This

result agrees with the 2-D simulations shown next.

A. 2D Simulations

To study bias and variance properties of each estima-

tor described above, we performed 2D simulations. For �

we used the synthetic attenuation map shown in Fig. 3,

which represents a human abdomen with linear attenua-

tion coe�cient 0:0096=mm. The image was a 128 by 64

array of 4.5 mm pixels. We simulated a PET transmission

scan with 192 radial bins and 256 angles uniformly spaced

over 180 degrees. The a

nj

factors correspond to 6 mm

wide strip integrals on 3 mm center-to-center spacing. The

b

n

factors were generated using pseudo-random log-normal

variates with standard deviation of 0.3 to account for detec-

tor e�ciency variations, and scaled so that

P

n

�y

n

was one

million counts. The r

n

factors corresponded to a uniform

�eld of 5% random coincidences. Pseudo-random transmis-

sion measurements were generated according to (2) and (3).

For regularization, we used the modi�ed quadratic penalty

of [3], which improves the spatial resolution uniformity.

Fig. 3. Simulated abdomen attenuation map.

We generated 100 independent realizations of the trans-

mission measurements. For each measurement realization,

an estimate of the attenuation map was reconstructed, us-

ing 20 iterations of the grouped-coordinate ascent algo-

rithm [5] applied to the objective functions (5), (6) and

(7). We computed both the sample mean and sample stan-

dard deviation images for all three methods.

Fig. 4 shows horizontal pro�les through the sample mean

images. These pro�les show that WLS is systematically

negatively biased, whereas the OP and SP models are free

of systematic bias. (One should note that the overshoot at

the edges is due to the quadratic penalty used in the re-

construction. Even with noiseless data, this blurring e�ect

will still be present.)

To study the standard deviation, we calculated the ratio

of sample standard deviation images of di�erent estima-



tors. Fig. 5 shows the histogram of the ratio of standard

deviations, over all interior pixels. The OP model yields

about 20% higher standard deviation than the SP model.

In other words, to achieve the same noise level, the OP

method would require about 40% greater scan time than

our proposed SP method.
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Fig. 4. The WLS method has a systematic negative bias. The

ordinary Poisson and the shifted Poisson models yield negligible

bias.
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Fig. 5. Ordinary Poisson model yields, on the average 20%, higher

standard deviation than proposed shifted Poisson model.

We performed additional simulations for the same PET

system described above, but this time using the synthetic

attenuation map shown in Fig. 6, which represents a hu-

man thorax with linear attenuation coe�cients 0.0165/mm,

0.0096/mm, and 0.0025/mm, for bone, soft tissue, and

lungs, respectively. Fig. 7 shows the pro�les through the

sample mean images. Similar to the observations from

Fig. 4, the WLS estimator is negatively biased. Fig. 8

shows the histogram of the ratio of standard deviations.

Again the OP model yields, on the average 11%, higher

standard deviation than SP model.

Fig. 6. Simulated thorax attenuation map.
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Fig. 7. The WLS method has a systematic negative bias. The

ordinary Poisson and the shifted Poisson models yield negligible

bias.

Note that the process of real-time subtraction of the de-

layed coincidence events from prompt events can lead to

some negative values in the precorrected data. Since the

mean of precorrected measurements is nonnegative, a nat-

ural choice might be to threshold the negative values in the

precorrected data to zero before applying the maximization

algorithm. (Moreover the likelihood objective function for

emission tomography is not guaranteed to be concave if the

measurements have negative values.) To study further the

e�ects of zero-thresholding the data, we performed addi-

tional 2D simulations with zero-thresholded data and using

the above phantoms [9]. The results have shown that the

OP estimator was systematically negatively biased, espe-

cially for interior regions of the reconstructed image, and

still had higher standard deviation than the SP estimator.

B. Estimates of the AC rates (r̂

n

)

One needs to know the mean of the AC events (r

n

) in or-

der to compute L

SP

(�). Since the r

n

terms are not readily

available from the real (precorrected) data, some estimates

of the randoms must be used.

Fig. 9 displays the scatter plot of real delayed coincidence

sinograms for blank scan and transmission scan data. Each

point in the plot corresponds to a speci�c detector pair.

The similarity of both delayed coincidence measurements

suggests that one can simultaneously acquire the delayed
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Fig. 8. Ordinary Poisson model yields, on the average 12%, higher

standard deviation than shifted Poisson model.

coincidence events during the blank scan and use it (af-

ter properly normalizing for di�erent scan durations) as an

estimate of the AC rates for di�erent transmission scans

performed on the same PET system. For emission tomog-

raphy the \singles" method suggested by Casey [1] can be

used to obtain an estimate of the rate of AC events.
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Fig. 9. Scatter plot of delayed coincidence event of blank and trans-

mission scans.

To test the robustness of the SP estimator to the er-

rors in estimates of AC rates, we performed additional

simulations using the phantoms and the PET system de-

scribed previously. We observed that, even using a constant

value of �r = (1=N )

P

N

n

r

n

, as an estimate of the AC event

rates did not introduce any systematic bias for SP estima-

tor and increased standard deviation only slightly (around

2%). Since the AC rates of transmission and blank scans

are highly correlated, using AC rates obtained from blank

scan measurements should yield better AC rates estimates,

resulting in very similar bias/variance performance as the

estimators obtained by using true AC rates.

V. Conclusions

When the AC events are precorrected in PET, the mea-

surement statistics are no longer Poisson. For transmission

scans, WLS method and ML method based on ordinary

Poisson (OP) model lead to systematic bias and higher

variance, respectively. Thus, we proposed a shifted Poisson

(SP) model for measurement statistics which matches both

the �rst and second-order moments. The corresponding

log-likelihood function was shown to have better agreement

with the exact log-likelihood function than the other meth-

ods above. Using Taylor approximation, implicit function

theorem and chain rule one can obtain analytic expressions

for the mean and the variance of the di�erent estimators

and using Cauchy-Schwarz inequality, it can be shown ana-

lytically that OP model leads to higher variance than both

the WLS and the SP methods [9]. We performed 2D sim-

ulations to support this observation. Another observation

was that the WLS method leads to unacceptably high sys-

tematic bias, especially for low count rates. We have also

shown that the e�ect of zero-thresholding the precorrected

data leads to systematic negative bias for the OP model

estimator. In addition, OP estimator still had a higher

variance than the SP estimator [9].

Lastly, the e�ect of using estimates of AC rates, for the

SP estimator was investigated. We observed that the SP

model is robust to errors in the estimates of AC events.

Namely, even using constant AC rates resulted in only a

slight increase in the standard deviation without any sys-

tematic bias [9].

It should be noted that the SP model does not increase

the computation requirements for the maximization algo-

rithm over that of the OP model.
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