
Uniform CR Bound: Implement ation Issues And Applications 

M. Usman, A.O. Hero and J.A. Fessler 
University of Michigan 

ABSTRACT 

We apply a uniform Cramer-Rao (CR) bound [l] to 
study the bias-variance trade-offs in single photon emis- 
sion computed tomography (SPECT) image reconstruc- 
tion. The uniform CR bound is used to specify achiev- 
able and unachievable regions in the bias-variance trade-off 
plane. The image reconstruction algorithms considered in 
this paper are: 1) Space alternating generalized EM and 
2) penalized weighted least-squares. 

I. INTRODUCTION 
The mean-square error (MSE) is an important measure 

of precision of a scalar component 81 of an estimator e. 
It is well known that the MSE is a function of both tbe 
bias, denoted biase(&) and the variance, denoted vare(81) - 
of the scalar estimator: 

A A 

MSEe(&) - = varE(&) + bias:(&). - 

Obviously increases in MSE c%n be due to increases in 
either the bias or variance of 81. Bias and variance are 
complementary in nature. While bias is due to 'mismatch' 
between the average value of the estimator and the true 
parameter, variance is due to statistical fluctuations in the 
estimator. There usually exists a tradeoff between bias 
and variance of the estimated parameter. For example 
in image reconstruction, implementation of the maximum 
likelihood algorithm with a smoothness penalty reduces 
the variance only at  the expense of introducing bias. Dif- 
ferent estimators can be effectively compared by plotting 
their performance on a bias-variance trade-off plane. The 
classical or the unbiased CR bound has been previously 
applied to compare different estimators [2, 31. However, 
in  most image processing applications the estimators are 
biased and their variance is not bounded by the unbiased 
CR bound. For biased estimators a biased CR bound is 
available [4] which is only applicable to estimators with 
fixed bias gradient Vebiase(&), hence it is unable to give a 
meaningful comparis& ofdifferent biased estimators that 
have acceptable bias but different bias gradients. We use 
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uniform CR bound [l] on the variance of biased estimators 
which divides the bias-variance trade-off plane 6-a into 
achievable and unachievable regions. Different estimators 
can be placed in the achievable region of the &U plane and 
their performance can be effectively compared. 

11. UNBIASED CR BOUND 

Consider the problem of estimation of an n-dimensional 
parameter = [el, ..., &IT given an observation of a vec- 
tor of random variables 1 with probability density function 
(pdf) fy(y;fl).The Cramer-Rao lower bound on the vari- 

ante of unbiased parameter estimator 81 is given by the 
upper-left (1,l) element of the inverse of an n x n, sym- 
metric, positive definite Fisher information matrix (FIM) 
Fy = Fy(8) :  

h 
- - 

vare(& 2 cy F?' e, ,  

FY = q v ;  ln fy - (1; e) 0, In fy - (1; e11 , 

(1) 
where, 

Ve - denotes the (row) gradient vector [&, ..., &], and 
e, = [I, 0, ..., o]T is an n-element unit vector. 

While the unbiased CR bound (1) is known to be asymp- 
totically achievable for large number of independent iden- 
tically distributed measurements, in practice, most estima- 
tion algorithms are biased and the unbiased CR bound is 
inapplicable. 

111. UNIFORM CR BOUND 

For a biased estimator & the following form of the biased 
CR bound is well known [4]: 

varg(6) 2 [vEm11 F;' [vgmllT, (2) 

where Veml - = Veml(@) - = Vebl - + e, is an n element row 
vector of the gradient of the mean E@(&) = ml(e). The 
application of the biased CR bound (2) is very restricted 
due to the fact that it is only applicable to estimators with 
a given bias gradient Vebl. In [l] Hero gives a 'uniform' 
CR bound on the variance of a single parameter 81 for 
non-singular FY.  This bound is applicable to all biased 
estimators whose bias gradient length J(Veb1II - satisfies: 

llV@11I2 L b2 < 1. (3) 

The following theorem is proven in [l]. 
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Theorem 1 Let 81 be an estimator with bias bl(1)  whose 
n-element bias gradient vector Vebl satisfies (3). Assume 
that the FIM Fy is non-singular. Then the variance of 81 
is bounded by: 

where a(& 6 )  is equal to: 

0. 
- 

varg(&> L B(1, 6), (4) 

where e, = [ I ,o ,  ...,o]T is an n-element unit vector and: 

and X is given b y  the unique non-negative solution of 
the following equation involving the monotone decreasing, 
strictly convez function g ( X )  E [O,1]: 

A more general version of Theorem 1, which will not be 
required here, is given in [5] and applies to singular Fy. 
Note that since X 0, the use of the expres- 
sion (6) does not suffer from any ill-conditioning of the 
FIM Fy.  In Theorem 1, dmin defined in (7) is an optimal 
bias gradient in the sense that it minimizes the biased CR 
bound (2) over all vectors Vebl. 
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Figure 1: The Normalized Uniform CR bound. 

Figure 1 shows a typical bias-variance trade-off curve in 
the 6-a plane. The region above and including the curve 
is the so called 'achievable' region where all the realizable 
estimators exist. Note that if an estimator lies on the curve 
then lower variance can only be bought at the price of 
increased bias and vice versa. At 6 = 1 the v_ariance goes 
to zero. This corresponds to the trivial case O1=Constant 
for which Vebl - = e,. 

Estimation of the Bias Gradient 

To compare a particular estimator to the uniform bound 
of Theorem 1 we require the length of the estimator bias 
gradient so tha.t the estimator can be placed somewhere 
within the xhievable region of Figure 1. In most cases 
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the bias and the bias-gradient are analytically intractable. 
The method of moments is the standard methcd for ex- 
perimentally determining bias and covariance of e which is 
based on forming the sample mean and sample covariance 
statistics for a sequence of L repeated experiments 
each generated from the density fy(y,;O).  - The method of 
moments for estimating the bias-gradient would require n 
additional sequences of L repeated experiments, each gen- 
erated for a particular perturbation of a different compo- 
nent of the parameter vector e. Such a direct approach is 
impractical. In [5] a method for experimentally determin- 
ing the bias-gradient of an estimator 3 is presented that 
requires a single simulation of the same type as th@ com- 
monly used to determine bias and covariance of e. The 
unbiased estimate of the bias gradient for the estimate of 
& is given by [5] :  Deb1 - = 

h 

. L  

A few comments about the bias gradient are in order. The 
bias gradient Vebl - is a measure of the influence of each 
component parameter 81, . .. , en on the mean ml(8) of the 
estimator 81. Ideally, to be close to unbiased one would like 
ml(e) to be insensitive to the variations in the other pa- 
rameters &, ..., 0,. Alternatively, since bl(6') = m~(fI)-Ol, 
it is desirable that the components & b l ( e )  be of small 
magnitude, L = 2, ..., n. The bias gradient therefore pro- 
vides important information about the parameter coupling 
to the estimator mean. The bias gradient is in general only 
indirectly related to the estimator bias, with the exception 
that Vebl = 0 implies b l (1)  = constant. An estimator 
that h& a constant bias independent of e is removable, 
and therefore Vebl - = 0 implies that the estimation can be 
performed without bias. Conversely, a non-zero bias gradi- 
ent implies non-removable estimator bias that is dependent 
on the estimator parameters. On the other hand, one can 
have a large bias gradient even though the bias is very 
small. Therefore the bias and the bias gradient together 
give a more complete picture of estimator behavior. 

.. 

Bias-Variance Trade- Off Plane 
A h  

When accurate estimates 61, Vebl and G2 of the esti- 
mator bias, bias gradient, and vargnce are available for a 
given estimator 81 of 01, the uniform CR bound lying in 
the 6-a plane can be easily mapped into the &U plane 
of variance and biases. This is accomplished by using 
the ordered triplet 61, V 2 1 ,  G') as a mapping between 
the 6-a and the 6-u plines. The uniform CR bound 
on the variance as a function of bias is s imdv the or- . "  ---T h 

dered pair: (TI, [gl + V;fb~]  - F$ [gl + VTbl]), - denoted 

B(&; 6 )  in the sequel. 



IV. APPLICATIONS 
We will apply the uniform CR bound to study the bias- 

va.riance trade-offs for: 1) Space alternating generalized 
expectation-maximization (SAGE) algorithm and 2) pe- 
nalized weighted least-squares estimator (WLSE). 

SPECT Image Reconstruction 

Sys tem Descript ion 

The system used in this paper is shown in Figure 2 and 
is called the SPRINT I1 system [6]. The system was de- 
signed specifically for brain imaging and consists of a ring 
of detectors and a ring of collimators. The function of the 
collimator is to reduce the uncertainty associated with the 
emission location of a y-ray to a line or a strip in the field 
of view (Figure 2).  During imaging time, the collimator 
ring is rotated through small steps about the source. A 
y-ray photon passing through one of the collimator slits at 
one of the rotation angles is counted as an event acquired 
in one ‘detector bin’. For reconstruction the source domain 
is divided into n small regions, called pixels. The detection 
process is governed by Poisson statistics: 1 = [Yl, ..., 

In (10) Bi is the average y-ray intensity of the i-th pixel; 
i = 1, ...p, 1; is number of y-rays detected at  the j- th 
detector, and pj is the average y-ray intensity of the j-th 
detector; j = 1, ..., d:  p = A e,  where A is the d x p system 
ma.trix that depends on the tomographic geometry. 

The objective is to reconstruct the object intensity of 
ea.ch pixel e = [el, ..., e,]* given the set of observations x. 
It can be easily shown that the FIM is of the form: 

Source, 

Figure 2: The SPRINT I1 system. Not drawn to scale. 

The system parameters are given in Appendix A and 
unless otherwise specified are those used in the simulations. 

In the following simulations the effect of attenuation was 
neglected. The total number of detected y-ray counts were 
10’. Noise due to scat,ter were 5% of the total counts. 
Since the algorithm considered in this section is non-linear, 
an analytic expression for the bias gradient is intractable, 
and therefore the bias gradient was estimated using (9). 
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Figure 3: The object used in the simulations. The object 
dimensions are 32 x 32. The black pixels are of intensity 
1 while the white pixels are of intensity 2. 

We used L = 400 realizations of the projection data to 
ensure the statistical accuracy of our estimator bias, bias 
gradient and variance. The object is a disk of uniform 
intensity 1 with a high intensity region of 4 pixels in the 
center of uniform intensity 2, called the hot spot. The 
pixel of interest was the pixel at the upper edge of the hot 
spot, marked ‘1’. The diameter of the disk is 32 pixels. In 
the following simulation, the algorithm was initialized by 
a uniform disk of intensity 1 and diameter 32 pixels. 

Space Al t e rna t ing  General ized EM 

om, I I I I I I I I I 

Figure 4: Performance of PML-SAGE as a function of CY. 

The iterative space alternating generalized expectation- 
maximization (PML-SAGE) algorithm maximizes a penal- 
ized likelihood objective function of the form: 

where P(e)  is the penalty function and a is the smooth- 
ing parameter. Setting cr = 0 corresponds to no image 
smoothing while a large value of Q corresponds to a sig- 
nificant amount of smoothing. PML-SAGE uses an intel- 
ligent choice of ‘hidden data spaces’ such that the E and 



A4 steps are analytically tractable. A detailed description 
of the PML-SAGE algorithm is given in [7]. 

It is easy to show that for the Poisson model 

where 0 is a vector operation denoting element-by-element 
division, and 1 = [l, 1, ..., 1IT. 

For the first set of simulations the smoothing parameter 
a w a s  varied (Figure 4). Points on the curves in Figures 
4 are labeled by the exponent of CY. The bias, bias gra- 
dient and variance were estimated and the uniform bound 
was plotted over the bias gradient length-variance trade-off 
plane, denoted &-U, and the bias-variance trade-off plane, 
denoted b-o. The PML-SAGE algorithms were terminated 
after 100 iterations for each of the L = 400 trials. The 
ellipsoidal confidence regions are not shown in the figure 
since they are smaller than the size of the plotting symbol 
I * ' .  Note that the bound, denoted by B(8;6) in Figure 4, 
is achieved for large biases, i.e. large a. For CY small, the 
curve 'B '  tends to deviate more from the lower bound and 
saturate, i.e. lower CY does not decrease the bias gradient. 
On the other hand the bias decreases to an asymptote near 
zero. 
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Figure 5: PML-SAGE: different image quantities of inter- 
est. An ordered pair with each curve indicates the (min- 
imum, maximum) value associated with that image. The 
images in (a) and (b), from top left to bottom right, are: 
Average reconstructed image, average bias of the recon- 
structed image, correlation image, optimal bias gradient 
d,i,, average bias gradient for the reconstructed image, 
and average standard deviation. 

At points close t,o the unbiased point, i.e. the leftmost 
corner of the horizontal axis, in curve 'A', maximal reduc- 
tion in bias is achieved at the price of significant increase 
in the va.riance. 

Figures 5 and 6 show several graphs of reconstruction 
quantities for a = 24, and cr = 21°, respectively. For clar- 
ity in the figures, we down-sampled all the images by a 
fact,or of 2. For each image in Figures 5 and 6 the ordered 
pair at  bottom indicates the minimum and maximum val- 
ues for that image. In Figure 5 ,  the mean reconstructed 
image is very close to the true image except around the 
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Figure 6: PML-SAGE: different graphs of reconstruction 
quantities for Iog2(a) = 10. 

edges. The correlation image, i.e. the column of FF1 cor- 
responding to the pixel of interest, 0 ~ 0 1 ,  shows a strong 
correlation with the neighboring pixels. This implies that 
to estimate 6 ~ 0 1  we must also estimate the strongly cor- 
related neighboring pixels accurately, while the influence 
of the far pixels can be ignored. Ideally, one would like 
the correlation between the pixels to be zero so that the 
estimate of a certain pixel, 6 ~ 0 1 ,  is independent of the es- 
timates of all other pixels. The plot for the theoretically 
optimal bias gradient dmin shows a similar strong influence 
from the neighboring pixels. 

The average bias gradient VObl for the reconstructed 
image is different from the theoretically optimal bias gra- 
dient dmin. Thus the PML-SAGE image reconstruction 
algorithm does not take best advantage of its bias alloca- 
tion since it is only by using the optimal bias gradient dmin 
given by (7) that the minimum bias length is achieved. 

Figure 6 shows the same set of images as in Figure 5 but 
for CY = 21°. Due to very high regularization) the hot spot 
is almost entirely smoothed out. Also, neither dmin nor 
the average bias gradient Vebl for the reconstructed image 
show significant coupling between the pixel of interest and 
the neighboring pixels. This is to be expected since in the 
overly smoothed case the bias is principally determined by 
the smoothness penalty as opposed to the projection data. 

Weighted Least- Squares Estimator 

Similar to the PML-SAGE, the WLSE is penalized for 
roughness, but minimized over a quadratic objective func- 
tion. The WLSE is given by [8]: 

where C is a weight matrix, P(g) is a regularization 
penalty, and A is the system matrix. We use a penalty 
function described in [8] which is imposed on the 8 neigh- 
boring pixels for each pixel of interest. The weight ma- 
trix C is diagonal, consisting of the covariance estimate 
of the observations. It is shown in [5] that a WLSE 
with an identity penalty function and ideal weight ma.trix 



C = diagi(pi) exactly achieves the uniform CR bound for 
all biases. 

Figure 7 shows the 6-u and k plots for the WLSE. The 
WLSE estimator follows the uniform CR bound closely 
for high bias and low variance, but tends to deviate away 
from the bound An interesting point to note is that both 
the PML-SAGE and the WLSE have similar bias-variance 
trade-off curves. However, the uniform bound on bias 
B(B,b) is different for PML-SAGE than that for WLSE 
since the bound on bias is indexed by algorithm bias gra- 
dient which is obviously algorithm dependent. 

Figure 7: Performance of WLSE as a function of a. 

Figures 8 and 9 show several graphs of reconstruction 
quantities using the WLSE for (Y = 24 and CY = 2". The 
comments for Figures 5 and 6 are valid here. The only 
exception being that the WLSE fails to accurately estimate 
the edges for small a.  This is due to the fact that the 
estima.tes of covariance involving the projections that graze 
t,he inmge edges a.re less accurate. 
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Figure 9: WLSE: different graphs of reconstruction quan- 
tities for log,(a) = 10. 

I. SYSTEM SPECIFICATIONS 

I Radius of the detector ring I 25 cms I I Number of detectors 1 512 
.. ~ 

Radius of the collimator ring I 17 cms 
Number of collimator slits I 10 (uniformly spaced) 

1 Slit-Width 1 2.4 mm 
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