
BIAS-VARIANCE TRADE-OFFS ANALYSIS USING UNIFORM CR BOUND 
FOR IMAGES 

M. Usman, A.O. Hero, and J.A.  Fessler 

University of Michigan, Ann Arbor MI 48109 

ABSTRACT 
We apply a uniform Cramer-Rao (CR) bound [l] to study 
the bias-variance trade-offs in parameter estimation. The 
uniform CR bound is used to specify achievable and un- 
achievable regions in the bias-variance trade-off plane. The 
applications considered in this paper are: 1) two- dimen- 
sional single photon emission computed tomography (SPECT) 
system, and 2)  one dimensional edge localization. 

1. INTRODUCTION 

The mean-square error (MSE) i s2n  important measure of 
precision of a scalar component 61 of an estimator e. It is 
well known th? the MSE is a function of both :he bias, 
denoted biasg(B1) and the variance, denoted varg(O1) of the 
scalar estimator: 

A 

MSEg(&) = varg(&) + bias;(&). 

Obviously increases in MZE can be due to increases in either 
the bias or variance of 81. Bias and variance are comple- 
mentary in nature. While bias is due to ‘mismatch’ between 
the average value of the estimator and the true parameter, 
variance is due to statistical fluctuations in the estimator. 
There usually exists a tradeoff between bias and variance 
of the estimated parameter. For example in image recon- 
struction, implementation of the maximum likelihood algo- 
rithm with a smoothness penalty reduces the variance only 
at the expense of introducing bias. Different estimators can 
be effectively compared by plotting their performance on a 
bias-variance trade-off plane. The classical or the unbiased 
CR bound has been previously applied to compare Merent  
estimators [2, 31. However, in most image processing appli- 
cations the estimators are biased and their variance is not 
bounded by the unbiased CR bound. For biased estimators 
a biased CR bound is available [4] which is only applicable 
to estimators with fixed bias gradient Vgbiasg(&), hence it 
is unable to give a meaningful comparison of different bi- 
ased estimators that have acceptable bias but different bias 
gradients. We use uniform CR bound [l] on the variance of 
biased estimators which divides the bias-variance trade-off 
plane 6-a into achievable and unachievable regions. Dif- 
ferent estimators can be placed in the achievable region of 
the &U plane and their performance can be effectively com- 
pared. 
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2. UNBIASED CR BOUND 

Consider the problem of estimation of an n-dimensional pa- 
rameter & = [&, ..., &,IT given an observation of a vector of 
random variables 11 with probability density function (pdf) 
f y ( g ;  &).The Cramer-Rao lower bound on the variance of 

unbiased parameter estimator 81 is given by the upper-left 
(1 , l )  element of the inverse of an n x n, symmetric, positive 
definite Fisher information matrix (FIM) Fy = Fy(e): 

A 
- 

varg(l1) 2 e: FG1 e,, (1) 

where, 

FY = Eg[Vg In fy(Y; e) Vg In fy(K &)Il - - 
Vg denotes the (row) gradient vector [&, ..., &], and 
e, = [I, 0, ...,o]’ is an n-element unit vector. 

While the unbiased CR bound (1) is known to be asymp 
totically achievable for large number of independent iden- 
tically distributed measurements, in practice, most estima- 
tion algorithms are biased and the unbiased CR bound is 
inapplicable. 

3. UNIFORM CR BOUND 

For a biased estimator 81 the following form of the biased 
CR bound is well known (41: 

A 

vug(&) 2 [Vgmi] FF1 [ V p i I T ,  (2) 

where Vgml = Vgml(s) = Vgb1 + gl is an n element row 
vector of the gradient of the mean &(&) = ml(e). The 
application of the biased CR bound (2) is very restricted 
due to the fact that it is only applicable to estimators with 
a given bias gradient Vgbl. In [I] Hero gives a ‘uniform’ 
CR bound on the variance of a single parameter 81 for non- 
singular FY. This bound is applicable to all biased estima- 
tors whose bias gradient length IlVgb1II satisfies: 

IlVgbi11’ 5 6’ < 1. (3) 

The following theorem ia proven in [l]. 

Theorem 1 Let & be an estimator with bias bl(&) whose 
n-element bias gradient vector Vgbl  satisfies (3). Assume. 
that the FIM FY i s  non-singular. Then the variance of 6 
is given by: 

uarg(&) 2 B ( B , ~ ) ,  (4) 
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where E(& 6 )  i s  equal to: 

( 5 )  
= [ I  + XFy1-I F y  [I  + XFy]-’ el (6) 

where e, = [l, 0, ..., 0IT is an n-element unit vector and: 

d,,, = -[I  + Fy]- ’e , ,  (7) 

and X is given by the unique non-negative solution of the fol- 
lowing equation involving the monotone decreasing, strictly 
conuez function g(X) E [O,I]: 

= &andman = 6’ x 2 0. (8) 

A more general version of Theorem 1, which will not be 
required here, is given in [5] and applies to singular F y .  
Note that since X 2 0 and F y  2 0, the use of the expression 
(6) does not suffer from any ill-conditioning of the FIM 
F y .  In Theorem 1, d,,, defined in (7) is an optimal bias 
gradient in the sense that it minimizes the biased CR bound 
(2) over all vectors Vgbpl. 

D O.Ot\ 0.1 

j 0.71 \ 

Figure 1: The Normalized Uniform CR bound. 

Figure 1 shows a typical bias-variance trade-off curve in 
the 6-U plane. The region above and including the curve 
is the so called ‘achievable’ region where all the realizable 
estimators exist. Note that if an estimator lies on the curve 
then lower variance can only be bought a t  the price of in- 
creased bias and vice versa. At 6 = 1 the Lariance goes to 
zero. This corresponds to the trivial case &=Constant for 
which Vgbl = e, .  

3.1. Est imat ion  of the Bias Gradient 

To compare a particular estimator to the uniform bound 
of Theorem 1 we require the length of the estimator bias 
gradient so that the estimator can be placed somewhere 
within the achievable region of Figure 1. In most cases the 
bias and the bias-gradient are analytically intractable. The 
method of moments is the standard m e t k d  for experimen- 
tally determining bias and covariance of which is based on 
forqing the sample mean and sample covariance statistics 
for a sequence of L repeated experiments {Ei)f=l each gen- 
erated from the density f y ( y  . e ) .  The method of moments - 4’- 

for estimating the bias-gradient would require n additional 

sequences of L repeated experiments, each generated for 
a particular perturbation of a different component of the 
parameter vector e. Such a direct approach is impracti- 
cal. In [5] a method for exyrimentally determining the 
bias-gradient of an estimator is presented that requires a 
single simulation of the same type =_that commonly used 
to determine bias and covariance of 8. The ybiased esti- 
m a t e z t h e  bias gradient for the estimate of 81 is given by 
[5]: Vgb1 = 

A few comments about the bias gradient are in order. The 
bias gradient Vgb1 is a measure of the influence of each 
component parameter 81, ..., 8, on the mean mt(e) of the 
estimator &. Ideally, to be close to unbiased one would like 
ml(t9J to be insensitive to the variations in the other param- 
eters 8 2 ,  ..., 8,. Alternatively, since = m1(&) - 81, it 
is desirable that the components & b l ( 8 )  be of small mag- 
nitude, k = 2, ..., n. The bias gradient therefore provides 
important information about the parameter coupling to the 
estimator mean. The bias gradient is in general only indi- 
rectly related to the estimator bias, with the exception that 
Veb1 = 0 implies h ( g )  = constant. An estimator that has 
a constant bias independent of e is removable, and there- 
fore Vgbl = 0 implies that the estimation can be performed 
without bias. Conversely, a non-zero bias gradient implies 
non-removable estimator bias that is dependent on the esti- 
mator parameters. On the other hand, one can have a large 
bias gradient even though the bias is very small. Therefore 
the bias and the bias gradient together give a more complete 
picture of estimator behavior. 

3.2. Bias-Variance Trade-off Plane 

When accurate estimates b l ,  Vfbl and s2 of the estima- 
tor bias, bias gr:dient, and variance are available for a 
given estimator 81 of 81, the uniform CR bound lying in 
the &U plane can be easily mapped into the bo plane of 
variance and bLaseLThis is accomplished by using the or- 
dered triplet ( b l , V ~ b i , ~ Z )  as a mapping between the 6- 
U and the bo planes. The uniform CR bound on the 
variance as a function of bias is simply the ordered pair: 

A h  

(xi, [gl + V T i ]  F$ [gl + V T l ] )  1 denoted B(& b )  in the 

sequel. 

4. APPLICATIONS 

We will apply the uniform CR bound to study the bias- 
variance trade-offs for: 1) a particular class of roughness 
penalized maximum-likelihood (PML) in SPECT image re- 
construction, and 2) one-dimensional edge localization. 
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4.1. SPECT Image Reconstruction 

4.1.1. Sys tem Description 

The system used in this paper is shown in Figure 2 and 
is called the SPRINT I1 system [SI. The system was de- 
signed specifically for brain imaging and consists of a ring 
of detectors and a ring of collimators. The function of the 
collimator is to reduce the uncertainty associated with the 
emission location of a 7-ray to a line or a strip in the field of 
view (Figure 2). During imaging time, the collimator ring 
is rotated through small steps about the source. A y-ray 
photon passing through one of the collimator slits a t  one 
of the rotation angles is counted as an event acquired in 
one 'detector bin'. For reconstruction the source domain is 
divided into n small regions, called pixels. The detection 
process is governed by Poisson statistics: = [YI ..., %IT. 

In (10) 0 ,  is the average 7-ray intensity of the i-th pixel; i = 
1, . . .p ,  Y,  is number of 7-rays detected at the j-th detector, 
and p j  is the average 7-ray intensity of the j-th detector; 
j = 1, . . . Id:  p = A where A is the d x p system matrix 
that dependson the tomographic geometry. 

The objective is to reconstructothe object intensity of 
each pixel e = [el, ..., &,IT given the set of observations x. 
It can be easily shown that the FIM is of the form: 

\ 

Figure 2: The SPRINT I1 system. Not drawn to scale. 

The system parameters are given in Appendix A and 
unless otherwise specified are those used in the simulations. 

In the following simulations the effect of attenuation 
was neglected. The total number of detected 7-ray counts 
were 10'. Noise due to scatter were 5% of the total counts. 
Since the algorithm considered in this section is non-linear, 
an analytic expression for the bias gradient is intractable, 
and therefore the bias gradient was estimated using (9). We 
used L = 400 realizations of the projection data E. The 
object is a disk of uniform intensity 1 with a high intensity 
region of 4 pixels in the center of uniform intensity 2, called 
the hot spot. The pixel of interest was the pixel at the upper 
edge of the hot spot, marked '1'. The diameter of the disk 
is 32 pixels. In the following simulation, the algorithm was 
initialized by a uniform disk of intensity 1 and diameter 32 
pixels. 

4.1.2. Penalized Maz imum Likelihood 

1 

Figure 3: The object used in the simulations. The object 
dimensions are 32 x 32. The black pixels are of intensity 1 
while the white pixels are of intensity 2. 

x 12 
I 

Figure 4: Performance of PML: MAP-SAGE as a function 
of a 

The penalized maximum-likelihood (PML) is penalized for 
roughness and has the same functional form as a MAP es- 
timator of the image intensities 8. The general form of the 
PML is given by: 

where P(B) is a roughness penalty and a is the smoothing 
parameter. We use a penalty function described in [7] which 
is imposed on the 8 neighboring pixels for each pixel of 
interest. Setting a = 0 corresponds to no image smoothing 
while a large value of a corresponds to a significant amount 
of smoothing. We have implemented the recursive SAGE 
algorithm to maximize the PML objective function. SAGE, 
which stands for space alternating generalized EM, involves 
an intelligent choice of a 'complete data space' such that 
the E and M steps are analytically tractable. A detailed 
description of the PML-SAGE algorithm is given in [7]. 
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(a) PMLSAGE,  log2(a) = 4 
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(b) PMLSAGE,  log2(a)  = 10 

Figure 5: PML-SAGE: different image quantities of inter- 
est. An ordered pair with each curve indicates the (min- 
imum, maximum) value associated with that image. The 
images in (a) and (b), from top left to bottom right, are: 
Average reconstructed image, average bias of the recon- 
structed image, correlation image, ideal bias gradient dmin, 
average bias gradient for the reconstructed image, and av- 
erage standard deviation. 

It is easy to show that for the Poisson model 

where 0 is a vector operation denoting element-by-element 
division, and 1. = [I, 1, ..., 1IT. 

For the first set of simulations the smoothing parameter 
a was varied (Figure 4). Points on the curves in Figure 4 are 
labeled by the exponent of a. The bias, bias gradient and 
variance were estimated and the uniform bound was plotted 
over 6-a and &a domains. The MAP-SAGE algorithms 
were terminated after 100 iterations for each of the L = 
400 trials. The 95% ellipsoidal confidence regions are not 
shown in the figure since they are smaller than the size of 
the plotting symbol '*'. Note that the bound, denoted by 
B(& 6) in Figure 4, is achieved for large biases, i.e. large a. 
For a small, the curve 'B '  tends to deviate more from the 

lower bound and saturate, i.e. lower a does not decrease 
the bias gradient. On the other hand the bias decreases 
to an asymptote near zero. At points close to the unbiased 
point, i.e. the leftmost corner of the horizontal axis, in curve 
'A', maximal reduction in bias is achieved at  the price of 
significant increase in the variance. 

Figure 5 shows several image quantities of interest for 
a = 2', and a = 21°, respectively. For clarity in the figures, 
we down-sampled all the images by a factor of 2. For each 
image in Figures 5 the ordered pair at bottom indicates the 
minimum and maximum values for that image. In Figure 5 
(a), the reconstructed image is very close to the true image 
except around the edges. The correlation image, i.e. the 
column of F;' corresponding to the pixel of interest, O R O I ,  

shows a strong correlation with the neighboring pixels. This 
implies that to estimate 0 ~ 0 1  we must also estimate the 
strongly correlated neighboring pixels accurately, while the 
influence of the far pixels can be ignored. Ideally, one would 
like the correlation between the pixels to be zero so that 
the estimate of a certain pixel, OROI, is independent of the 
estimates of all other pixels. The plot for the theoretically 
optimal bias gradient d,,, shows a similar strong influence 
from the neighboring pixels. 

The average bias gradient Vg61 for the reconstructed 
image is different from the theoretically optimal bias gradi- 
ent ti,,,. Thus the penalized SAGE image reconstruction 
algorithm does not take best advantage of its bias alloca- 
tion since it is only by using the optimal bias gradient ti,,, 
that the minimum bias length is achieved. 

Figure 5 (b) shows the same set of images as in Figure 5 
(a) but for a = 2". Due to very high regularization, the hot 
spot is almost entirely smoothed out. Also, neither d,,, nor 
the average bias gradient Vebl for the reconstructed image 
show significant coupling between the pixel of interest and 
the neighboring pixels. This is to be expected since in the 
overly smoothed case the bias is principally determined by 
the smoothness penalty as opposed to the projection data. 

4.2. OneDimensional Edge Localization 

In many imaging applications it is important to determine 
the location I of an edge along an oriented line segment. In 
[3] the unbiased CR bound is derived on the localization 
accuracy of an edge estimator. As in [3] we define an edge 
by the following 3 parameters (Figure 6): 1) Intensity I, 
2) location I, and 3) width us. The edge is modelled as 
the following function of position z along the oriented line 
segment: 

where q(z)  is additive white Gaussian noise of variance nz, 
and CP is the cumulative distribution function of an N(0, 1) 
Gaussian random variable. We assume that the width 6, 
of the edge is known. 

= [1,IIT 
based on the noisy edge observation R is given by [3]: 

The FIM FR(~') for the parameter vector 
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Figure 6 :  A typical edge profile along with the optimal 
Canny operator in our example. Edge parameters: Inten- 
sity I = l O ,  width us = 6, and location 1=26. 

Radius of the detector ring 
Number of detectors 
Radius of the collimator ring 
Number of collimator slits 

where TI is the extect of the observation window. 

using the Canny operator. 
An estimator of 1 of the edge location was constructed 

25 cms 
512 
17 cms 
10 (uniformlv sDaced) 

where 4 is a Gaussian function with scale rc, and W ( z )  i 
a window function: 

1 Z E [ - + , F ]  
0 otherwise. W ( z )  = 

The precess R ( z )  is filtered by the Canny operator to pro- 
duce an output fc(z): 

where * denotes discrete convolution. The minimum value 
of fc(z) determines the location of the edge. It is shown in 
[3] that the optimal choice of the Canny width oc, deter- 
mined by minimizing the unbiased CR bound, is f iu .  for 
an unbiased edge localization algorithm. 

The length of the data R ( z )  containing the edge was 
1000 points. The edge parameters used were: I = 15, U. = 
6, and 1 = 501. We used a window T2 of 50 data points, 
n% = 8. We varied uc from 3 corresponding to  a difference 
operator, to 31 corresponding to a ramp filter. For each 
value of uc investigated we generated 100 independent re- 
alizations of noisy edge profile R(z). The bias gradient was 
estimated using (9). The results are shown in Figure 7. 
The 95% confidence intervals are smaller than the size of 
the plotting symbol *. 

The curve 'B' in Figure 7 shows a point of minimum 
variance at oc = 16, which also corresponds to minimum 
bias (curve 'A') on the b-u plane, and hence a point of min- 
imum MSE. Note that the minimum variance is achieved 
close to the optimal uc = f i u ,  = 13.5 determined by min- 
imizing the unbiased CR bound. An interesting point to 
note is that although the bias and the variance vary non- 
monotonically with increasing uc, the bias gradient length 
increases monotonically. For uc between 4.5 and 16 the es- 
timator standard deviation tracks the uniform CR bound 
B(&, 6 ) ,  however with an offset of approximately 0.2. 

Figure 7: The uniform CR bound and the sample variance 
for varying uc. The numbers associated with the curves 'A' 
and 'B' indicate uc. 

A. SYSTEM SPECIFICATIONS 

. .  
Slit Width I 2.4 mm 1 
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