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ABSTRACT 

This paper summarizes a new Bayesian method for 
edge-preserving image restoration from noisy measure- 
ments. The line-site method of Geman and Geman 
forces region boundaries to lie along pixel boundaries, 
which is unnatural, particularly for 3D data. Here, we 
augment the intensity process with a binary “mixture 
site” process, which has one parameter for each pixel 
indicating the presence of a boundary a some unknown 
location within that pixel. The method was motivated 
by PET and SPECT transmission images with partial 
volume effects, and is easily extended to 3D data sets. 

1. INTRODUCTION 

Natural objects often consist of several distinct regions, 
where the object intensity is a relatively smooth func- 
tion within each region, but may have large gradients 
along the boundaries between regions. Given noisy 
measurements of such a piecewise smooth  intensity func- 
tion, one would like to obtain an estimate of the un- 
derlying object. Ideally the estimation method should 
be edge-preserving, i.e., one smooths within regions to 
reduce variance, while preserving edges by not smooth- 
ing between regions. This paper summarizes a new 
Bayesian method for edge-preserving image restoration 
from noisy measurements. 

Our method was motivated by the medical imaging 
application of estimating attenuation maps from noisy 
positron emission tomography (PET) or single photon 
emission computed tomography (SPECT) transmission 
scans. At the photon energies of PET and SPECT 
imaging, the attenuation coefficient distributions in hu- 
man subjects consist of distinct regions of air, lung, soft 
tissue, bone, etc. Within each tissue type the attenua- 
tion coefficient is fairly uniform (though not perfectly 
uniform). Therefore attenuation maps are an example 
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of piecewise smooth functions. A limiting character- 
istic of PET and SPECT instruments (and virtually 
all imaging devices) is the part ial  vo lume effect: if the 
support of an image pixel overlays the boundary be- 
tween two regions, then the measured intensity value 
for that pixel will consist of a mixture of partial contri- 
butions from both tissue types. The method proposed 
in this paper attempts to address these mixture char- 
acteristics in the PET and SPECT context, although 
it is generally applicable to images of piecewise smooth 
objects. 

There are at least three categories of methods for 
edge-preserving image restoration. Perhaps the sim- 
plest approach is to make the stronger assumption that 
the object is piecewise constant ,  and then assign each 
image pixel to one of several classes (segmentation), 
using an algorithm such as ICM [l]. However, the 
piecewise-constant assumption is inappropriate for bi- 
ological images that exhibit intensity variations within 
regions. A second approach is to use a penalized likeli- 
hood method with a non-quadratic penal ty .  The “ b r e  
ken parabola” function [2], the log cosh function [3], 
and the generalized Gaussian random field [4] are ex- 
amples of non-quadratic penalty functions that encour- 
age smoothness while allowing discontinuities. Most 
such penalty functions are non-convex, and as shown 
by Bouman and Sauer [4], non-convex objectives can 
lead to object estimates that are discontinuous func- 
tions of the measurements. Another disadvantage of 
non-quadratic penalty methods is that they do not ex- 
plicitly enforce continuity of object boundaries, since 
they essentially act only pairwise on the object’s pix- 
els. 

A third approach, more closely related to our pro- 
posed method, is to augment the intensity function 
(or in tens i ty  process) with an ancillary random pro- 
cess that controls the formation of object boundaries. 
The canonical example of such an approach is the line- 
s i te  method of Geman and Geman [5], in which one 
augments the intensity process with a binary l ine-s i te  
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process. Each pair of pixels is connected by a line-site 
that takes values 1 or 0 to indicate the presence or ab- 
sence respectively of an edge between those two pixels. 
One jointly estimates the line-sites and the intensity 
parameters from the noisy data. 

The line-site method has the following drawbacks. 

0 Region boundaries are effectively constrained to 
lie along pixel edges. This constraint leads to un- 
naturally “blocky” restorations, and is not nat- 
urally suited to multi-resolution processing. Al- 
though in principle one could minimize this prob- 
lem by using very small pixels, (i.e., smaller pix- 
els than the discrete measurements) this increases 
the computation, and increases the likelihood of 
local extrema in the objective function when esti- 
mating more parameters than there are measure- 
ments. 

0 For 3D volume data, the extension of the line-sitme 
method requires 3 additional “edge-site’’ param- 
eters for every intensity parameter. The compu- 
tational burden and problems of over parameter- 
ization scale accordingly. PET and SPECT data 
is virtually always acquired over several contigu- 
ous slices, so a 3D approach is very natural, since 
the attenuation map is piecewise smooth both 
axially and transaxially. In fact, human atten- 
uation maps are probably smoother axially than 
transaxially since many important structures (spine, 
skull, lungs, etc.) have a vertical structure. 

Rather than augmenting the intensity process with 
a line-site process, we propose a new Bayesian model 
based on maxture s i tes ,  as illustrated by Figure 2. We 
augment each pixel or voxel with one additional binary 
mixture parameter that takes values 1 or 0 indicating 
the presence or absence respectively of a “mixture” of 
two or more regions within that pixel. The advantages 
of this approach are the following: 

0 The mixture-site model does not constrain the re- 
gion boundaries to lie along pixel edges, thereby 
allowing the smooth region boundaries of natural 
objects. Our prior assumes that smooth bound- 
aries of natural objects almost surely will not lie 
exactly between any pair of pixels. This assump- 
tion is completely opposite to that of the line-site 
method. 

0 The mixture-site model adds only one extra pa- 
rameter per pixel, even for 3D problems. 

0 The mixture-site model is naturally suited to hi- 
erarchical or multi-resolution data processing. If 

a fine-grid pixel is a mixture of two or more re- 
gion types, then any coarse-grid pixel that over- 
laps that fine-grid pixel must also be a mixture. 

The mixture-site method does share with the line-site 
method the problems of non-convexity associated with 
models that have both discrete valued and continuous 
valued parameters. 

site method translate into more accurate restored im- 
ages than the line-site method will not be addressed in 
this short paper. Here we simply introduce the model 
and illustrate its behavior with anecdotal results. 

Whether the philosophical advantages of the mixture- 

2. MODEL AND METHOD 

2.1. Measurement Model  

Let p(g)  denote the underlying (continuous) object in- 
tensity function, where a: denotes either 2D or 3D spa- 
tial coordinates. For this paper we assume the following 
linear additive noise model for the (discrete) measure- 
ments: 

where En - N ( 0 , a 2 ) ,  and h,(g) denotes the point- 
spread function (PSF) for the nth detector element. 
In the most ideal case, the PSF would be a Dirac 
delta function located at the center gn of the nth pixel, 
in which case we would have the oft-assumed model: 
y, = &,)+E,,. This is never achieved in real bandlim- 
ited imaging systems; at best the PSF h,  (1) will be an 
indicator function over the (typically square) support of 
the nth pixel. Any such imagingsystem exhibits partial 
volume effects, i.e. if the nth measurement pixel over- 
laps a boundary between two regions, then the mean 
of gn will be a mixture of more than one object inten- 
sity. Without multi-channel information [6], it would 
be very difficult to identify the relative contributions 
of each region in such mixture pixels. Nevertheless, we 
would like to avoid arbitrarily assigning the intensity 
of such pixels to that of one or the other of the two 
regions, which is essentially what the line-site method 
does. 

To estimate p ,  we must adopt a discrete parame- 
terization. We use the conventional voxel basis: 

P 

P(C) M C~lj~jti~). (2) 
j = 1  

where Ij(g) is the indicator function over the j t h  voxel. 
Vectorizing (1) and (2) yields: 

t ( = H p + c ,  
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where the (n , j ) th  element of H is Jhn(g) l j (g )  dg. 
Our goal is to estimate the unknown object intensities 
p = b1 , . . . , pp]‘ from the noisy measurements y = 
[YI 7 . . ., ~ n l ’ .  

2.2. Mixture-site Process 

We augment the intensity parameter p, for the j t h  
pixel with a binary mixture-site parameter denoted m,. 
We would like to have m, = 1 if the j t h  pixel overlays 
a region boundary, and to have m, = 0 otherwise. Of 
course the mj’s  are unknown so we must jointly esti- 
mate the mixture-site process m = [ml ,  . . . , 7 9 1 ’  and 
the intensity process p.  We model the prior distri- 
bution of m using a Gibb’s distribution, with the six 
(rotationally invariant) clique types shown in Figure 1. 
Our log-prior for the mixture-site process m is 

5 

0 2 ( m )  = - logp(m) = Pc#c(m), 
c=o 

where #,(m) is the number of cliques in m of the cth 
type. Since the cliques are 2 x 2, the neighborhood 
structure is 3 x 3. We believe these are the simplest 
cliques that will still allow us to encourage some bound- 
ary continuity. 

What should the “cost” be for each of the clique 
types shown in Fig. 1,  i.e. how should one specify the 
parameters PO, . . . , Ps? A similar question applies to 
the line-site method, and Silverman el a1.[7] have pro- 
posed an answer using an isotropy constraint. They 
minimize the ratio of the maximum to minimum cost 
for a boundary at angles between 0 and 7r/4. Applying 
this same approach to the mixture site penalties yields 
the following constraint: 

P1 + P 4  = JZP,. 
Clearly additional constraints are needed, and this is a 
subject for future research. 

2.3. Intensity Process 

We model the prior distribution of p conditioned on 
m to be a modified Gaussian Gibbs distribution, with 
log-prior given by: 

Q l ( c L l 4  = - logp(Crlm) = 

where W j k  is 1 for horizontal and vertical neighbors, 
1 / 4  for diagonal neighbors, and 0 otherwise, and 

yo, 

y1 , otherwise 

mk = m, = 0 
7 2 ,  mk = m, = 1 . 

Using yo > y2 > y1 encourages smoothness within re- 
gions, but allows discontinuities between regions. Note 
that if yo = 71 = 72,  then 01 degenerates to the clas- 
sical auto-normal prior [I]. 

2.4. Posterior 

We adopt a Bayesian (or penalized likelihood) approach, 
obtaining a point estimate of p by the maximum a pos- 
t e r i o r i  (MAP) criterion: 

( f i l  lit) = arg max logp(Cr1 mlv) .  
Icpm 

Using the fact p(ylp,  m) = p ( y J p )  and Bayes rule: 

P(P1 mlg) = P(YlCl)P(plm)P(m)/P(Y)l 

so the MAP estimate minimizes the objective: 

One could minimize this objective function using sim- 
ulated annealing [5], deterministic or mean field an- 
nealing [8], or by a greedy descent algorithm like it- 
erated conditional modes (ICM) [l]. In the examples 
below, we simply used ICM, where for each iteration 
each pair (p ,  , m,) is simultaneously  updated to mono- 
tonically decrease @. 

As for all greedy algorithms for non-convex objec- 
tives, a good initial estimate is desirable. We first per- 
formed a classical ML estimate of p, (under the piece- 
wise uniform assumption). We used that ML estimate 
to initialize the ICM algorithm of Besag [l] with the 
pairwise interaction model (also piecewise uniform). 
The result of that estimation was then taken as the 
initial estimate po for minimizing @(p,  m ) ,  where m0 
was taken simply to be 0. 

3. RESULTS 

To illustrate the mixture-site method, we performed 
simulations summarized by Figures 3 and 4. For these 
examples, we took H = I, but the true objects were 
first generated on a very fine grid and then reduced 
down to a coarse grid, so that pixels on object bound- 
aries would have partial volume effects, as is usually 
the case with real measurements. 

For the geometric phantom in Fig. 3, the object 
intensities in the rectangle and circle were 1 and 2 re- 
spectively, and d = 0.25. From top to bottom, Fig. 3 
shows: 

0 the noisy measurements y, 

0 the ordinary ML estimate of p, 
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Method 
Geometric Thorax 
Phantom Phantom 

Note that even though the underlying object is piece- 
wise constant, the mixture-site method (which is based 
only on a piecewise-smooth assumption) outperforms 
the classical pairwise interaction ICM method. It is 
clear from examining the error images that the largest 
errors in the pairwise interaction ICM method are near 
region boundaries. That method, like the line-site method, 
makes the inaccurate implicit assumption that region 
boundaries lie along pixel edges, whereas the mixture- 
site method assumes the region boundaries lie some- 
where within the pixels. We do not attempt to  locate 
those boundaries within the pixels, but Figs. 3 and 4 
demonstrate that the mixture-site method does a rea- 
sonable job of identifying which pixels contain region 
boundaries, 

These preliminary results indicate the potential util- 
ity of the method. In the future we will perform more 

Data y 
ML Estimate 
Pairwise Interaction ICM 
Mixture-Site Model 

quantitative comparisons between our mixture-site method 
and the line-site method, and will evaluate the method 
on 3D data sets acquired using PET transmission scan- 
ning. 

1 1 
1.4 1 .1  
2.9 3.5 
4.7 4.1 
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Figure 3: Geometrical phantom. See text. 

Figure 2: Coarse and fine grid representations of mix- 
ture sites for a scene containing two regions. There is 
a natural hierarchical relationship between coarse and 
fine grid mixture sites. 

Figure 4: Human thorax phantom. See text. 
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