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ABSTRACT 

Since image reconstruct ion and restoration are ill-posed 
problems, unbiased estimators often have unacceptably 
high variance. To reduce the variance, one introduces 
constraints and smoothness penalties, which yields biased 
estimators. This bias precludes the use of the classical 
Cramir-Hao (CR)  lower bound for the variance of an un- 
biased estimator. This paper presents a uniform bound for 
minimum variance subject to  a bias gradient constraint. 
Since the bound is independent of any estimator, one can 
explore the fundamental tradeoff between bias and vari- 
ance i n  ill-posed problenis. We apply the bound to a lin- 
ear Gaussian model, and demonstrate the optimality of a 
siniple penalized least-squares estimator. 

I .  BIASED CR BOUNDS 

Let Y be a random vector whose density f(y;e) depends 
on a vector parameter 8 of length p .  The Fisher informa- 
tion of Y for 8 is the p x p matrix 

F(8) = E{-C210gf(Y;8)}.  

Let 4 = 8(y) be an estimator for 8. The bias of b is 

A .  Oidinniy  C.R Round 
The classical C R  bound [I]  for the minimum variance of 
an estimator with bias b(8 )  is given by: 

(:ov{8} 2 ( I  + n ( e ) ) W ( e ) ( I  + vb(e)), 
where ’ denotes matrix transpose, I is the p x p identity 
matrix. F+ is the Moore-Penrose inverse of F, and V de- 
notes the row gradient operator. This bound is of very 
limited use if one hopes to compare a broad class of es- 
timators, rather than just those that happen to  have’the 
bias gradient Ob(@) .  
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B.  Uniform Bound 
Since all regularized estimators entail a tradeoff between 
bias and variance, we would like to  know how much one 
can reduce the variance by introducing some given amount 
of bias. As we describe later, it is advantageous to  con- 
strain the bias gradient rather than the bias itself. In [2], a 
“uniform” CR bound on the variance of 81 was derived for 
nonsingular Fisher information matrices We generalize 
that derivation here by allowing singular Fisher informa- 
tion matrices. This is important since image reconstruc- 
tion problems are often underdetermined (i.e., when the 
number of image pixels to be estimated is greated than 
the number of measurements). Note however that F will 
always be nonnegative definite [3]. 

For simplicity. we consider only the first component 81, 
and define the bias gradient column vector 

g(0) = C’b(B)eI* 

where el is the first unit vector of length p lye constrain 
the magnitude of the bias gradient by: 

lk?(~)llc F 6 .  (1) 

where 11g11& = g’Cg. We assume C is positive definite. 
Consider the following sequence of inequalities: 

var{&) L (el  + g w ) ‘ F + ( e l  + g ( w  
2 min (el + g(B))’F+(el + g ( 8 ) )  

g( e ) 11g( e)1lc 5 6 

The constrained minimization over d can he solved using 
a Lagrange multiplier, yielding the (unique) solution: 

1 = 0  
d, = 0, 7 = x ,  t (2 )  { -(yC + Ft)-’Ftel, 3 E CO,>%) 

where y = ~ ( 6 )  is the solution to 

d:Cd, = h 2 .  

Defining 

B1(@,6) = (el + &(b))’F+(e)(ei + d7(d)), 
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we see then that 81(8,6) is a uniform lower bound on 
the variance of 01 for all estimators satisfying the con- 
straint (1) on the magnitude of the bias gradient. 

In general, computing the uniform bound for any par- 
ticular 6 is less informative then examining the graph 
(ti2, B(8,6))  as 6 varies over [0,1]. Since there is a one-to- 
one relationship between 6 and the Lagrange parameter y ,  
in the sequel we typically ignore b and examine the graph 
(d!,Cd,, B(y)) where 

B(y) = (e1 + d,)'We1 + 4).  
As y varies from 0 to  CO, the bound B ( 7 )  varies from 0 
to Ft, whereas the magnitude of the bias gradient varies 
between 1 and 0. One can show from (2) that 

el + d ,  = ( I+y- 'C- 'Ft) - 'e~ ,  

so 

C. Symmetry 

Since a Fisher information matrix F is symmetric non- 
negative definite, it is diagonalized by some orthonormal 
matrix V.  Let 

F = VAV' 

where A is diagonal with the eigenvalues of F. Thus 

Ft = VA'V', 

where A+ is diagonal will1 entries that are zero where A 
is zero and the reciprocal of A otherwise. Assume that C 
can also be diagonalized by V: 

c = v n v '  

(this is trivially true when C = I). Then from ( 2 )  

U!-, = -V(y0 + At)"A+q (5) 

and 
el + d, = -V(I + y-'fI-'At)-lq,  (6)  

where q = V'el is the first column of V'. Substituting (5) 
and ( 6 )  into (3) and (4) and commuting the diagonal ma- 
trices: 

B(y) = q'(y-'I + 0A)-?Af12q 

and 
d;Cd, = q ' ( y 0  + At)-2f l (At)2q,  

I .  . . .  

Figure 1: Canonical bias gradient versus standard devia- 
tion graph. 

Let X k  denote the diagonal entries of A ,  and W k  the diag- 
onal entries of 0, for IC = 1, . . . , p .  Then 

From (7) and (8), we see that the bias-variance graph 
(d!,Cd,, B(y)) is the weighted sum of p graphs of the forni 

W X  

) ( (1 + ywX)2 (7-1 + W X ) ?  ' 
1 

for X # 0, where the weights are wkq: .  The basic foriii is 
shown in Figure 1. Note the steep slope at  zero: a small 
bias can significhntly reduce variance. \.\p refer to this 
graph as the canonical bias-variance curve. 

Note that if F is circulant, then V is the discrete Fourier 
basis, q: = l /p,  and each X k  is the kth Fourier amplitude. 

11. LINEAR GAUSSIAN MODEL 

In the remainder we focus on the linear Gaussian model: 

Y - N(A8,  II), 

where 8 E %P is the parameter to be est.iniated, and 11 
is a positive-definite noise covariance matrix. The Fisher 
infdrmation of Y for 8 is given by 

F = A'II-'A. 

A .  Linear Est im n t o rs 

Define the following SVD: 
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where U E F"'n, V E W " P ,  I: E ?Xnxp. Then the Fisher B. Penalized Weighted Least Squares 
informat ion is 

F = A'n-'A = VI:'EV, 

A natural regularized estimator for the Gaussian image 
reconstruction problem is the following penalized weighted 
least-squares estimator: 

so A = E'E, i.e. Ak = n:. Any linear estimator for 8 can 8 = argmin (y  - AB)'II-'(y - A@) + DO'RO, 

where R is a symmetric nonnegative definite regularization 
matrix. We assume F + PR is positive definite, which is 

be written: e 
e = LY = v w u ' n - ' / 2 y  

where W E % P x n .  The bias of this estimator is 

b = VWU'I I - ' / 2A8  - 8 

reasonable if R is to be very useful. In the absence of 
constraints, the solution to this is given by: 

A 8 = (F + DR)-'A'II-'y = Ly. 
= V(WE - 1 ) v ' e .  where F = A'II-lA. Recall that F = VAV' ,  and let 

Thus the bias gradient is DR = V'RV. 

so 
g 'Cg  = lp1 'z(wI:  - I)'qlIZ. 

The covariance of this estimator is 

LIIL' = vww'v'. 
so the variance of 81 is Var(81) = q'(A + PD&)-'A(A + D D R ) - ' q ,  

e ~ V W W ' V ' e 1  = 11W'q(12. The bias is 
b = (LA - qe, 

Note to minimize variance we would like W to be small, thus the bias gradient vector for Q1 is 
but to minimize bias we would like WI: - I to be small. 
'These conflicting objectives epitomize the bias-variance g = (LA - I)'el = (F( F + OR)-' - 1)el. 

Therefore t radeoff. 
If the elements of W art= zero, except for the first p x p 

block being diagonal with entries { W k } i = l r  then for this g = -OR(F+4R)-'el 
linear estimator the graph of (bias gradient, variance) is: = -OVDR( A + @DR)-'q, 

so 
(9) 

In particular. if In particular, if DR is diagonal with ent rim l ' k ,  then 

then the graph ( 9 )  has the same form as the bound (7)-(8), 
except that the bias term (8) only sums over nonzero A k .  

'Thits i f  the Fisher information matrix is nonsingular, then 
the linear estimator w i t h  weights given by (10) achieves 
the uniform bound (i). ic'e show below that this corre- 
sponds to a penalized least-squares estimator. Apparently 
the choice (10) is the only choice that achieves the bound, 
thus the penalized least-square? tstimator is in some sense 
optimal. In particular, the penalty method appears to be 
superior to the "truncated SVD" estimator that  has been 
popular in imaging problmis. 

and 

Thus, if R = C-' and P = T - ' ,  then comparing (7)  and 
(8) with (11) and (12) we see that this estimator achieves 
the uniform bound if F is nonsingular. If F is singular, 
it may be that the uniform bound is unachievable. Note 
that the results in [2] on achievability are only for the case 
where F is nonsingular. We conjecture that tighter bounds 
may exist for the case where F is singular. 
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Figure 2: Comparison of truncated series estimation and 
penalized weighted least squares to uniform bound for a 
deconvolution problem. 

111. EXAMPLE 

To compare the performance of a penalized least-squares 
estimator t o  the truncated series estimator and to  the uni- 
form bound, we consider a 1-D deconvolution problem. 
Assume II = I, the system A is circulant with kernel (0.15, 
0.7, 0.15), and n = p = 64. Figure 2 compares the calcu- 
lated variances for specified bias gradients over a range of 
y, p, and n. For a given bias gradient magnitude, the pe- 
nalized estimator achieves the bound, whereas truncated 
series estimator does not. For more complicated nonlinear 
estimators, one has to perform Monte Carlo simulations to  
evaluate the performance for comparison with the bound. 
This type of analysis should be very useful for examining 
estimator performance. 

Iv. BIAS GRADIENT 

One might think it would be preferable to have a bound on 
the minimum variance subject to a magnitude constraint 
on the bias vector, rather than on the bias gradient. To 
illustrate why such a bound does not exist, consider the 
model Y - N ( 0 , l ) .  Applying the uniform bound, one 
finds that for a bias gradient magnitude constraint of 6 ,  
the minimum variance for an estimate of 0 is (1 -6)’. Now 
consider the “shrinkage” estimator 6 = P T + ( ~  -p)Y .  The 
variance of 6 is (1 - p)’, and the bias is p ( s  - e ) ,  which 
could be as small as 0 if 0 happened to equal T. Thus, the 
magnitude of the bias tells us nothing about the variance. 
On the other hand, the magnitude of the bias gradient 
for this estimator is 1/71, which immediately tells us (from 
the uniform bound) that if p = 6, the shrinkage estimator 
achieves the uniform bound. 

Although the bias gradient may not be an intuitive 

object in general, in image reconstruction or restoration 
problems, the bias gradient is closely related to  the bias of 
a point source. (This is expected, since imaging systems 
involve tradeoffs between resolution and noise.) To illus- 
trate, recall that  for a linear estimator the bias gradient 
is: 

g = V(WE - I)’V’el, 

and the bias is: 

b = V(WX - 1)V‘e. 

If (WE)’ = (WE), which is usually the case, then one 
can rewrite the bias gradient as: 

g = V(WE - I)V’el. 

Therefore, if the image is a point source, i.e. if 8 = el, 
then the bias vector equals the bias gradient vector. For 
many nonlinear estimators, we conjecture that a similar 
relationship can be established using perturbation analysis 
of a point source in a uniform image. 

V. DISCUSSION 

We have analyzed a uniform bound on the variance for 
estimators whose bias gradient satisfies a magnitude con- 
straint. For a linear Gaussian model with invertible Fisher 
information, a penalized least-squares &mator achieves 
the bound. Further study of the important underdeter- 
mined case is ongoing. 
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