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ABSTRACT 

Expectation-maximization (EM) algorithms have been 
applied extensively for computing maximum-likehood 
and penalized-likelihood parameter estimates in signal 
processing applications. Intrinsic to each EM algorithm 
is a complete-data space (CDS)-a hypothetical set of 
random variables that is related to the parameters more 
naturally than the measurements are. This paper de- 
scribes two generalizations of the EM paradigm: (i) al- 
lowing the relationship between the CDS and the mea- 
sured data to be nondeterministic, and (ii) using a se- 
quence of alternating complete-data spaces. These gen- 
eralizations are motivated in part by the influence of the 
CDS on the convergence rate, a relationship that we for- 
malize through a data-processing inequality for Fisher 
Information. We apply these concepts to the problem 
of estimating superimposed signals in Gaussian noise, 
and demonstrate that the new space-alternating gener- 
alized EM algorithm converges significantly faster than 
the ordinary EM algorithm. 

INTRODUCTION 

Signal processing applications of EM algorithms for 
computing maximum-likehood (ML) parameter esti- 
mates have included tomography, image restoration, and 
estimation of superimposed signals [l-51. Intrinsic to 
an EM algorithm is the notion of a complete-data space 
(CDS), which is a hypothetical set of random variables 
that, had they been measured, would have facilitated pa- 
rameter estimation [l]. The conventional EM algorithm 
requires that the complete-data space be larger than the 
measurement space in the sense that every point in the 
CDS determines a point in the original measurement 
space via a deterministic functional relation. EM al- 
gorithms are notorious for slow convergence, and the 
choice of CDS is affects the convergence rate. In this 
paper we describe two generalizations of the EM algo- 
rithm, and we establish a formal relation between the 
EM convergence rate and the conditional Fisher infor- 
mation of the CDS given the observations. 
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The two generalizations are (i) allowing the relation- 
ship between the CDS and the measurements to be non- 
deterministic, and (ii) a “space alternating” generalized 
EM algorithm in which multiple complete-data spaces 
are used iteratively. These generalized EM algorithms 
allow more flexibility in algorithm implementation and 
can converge faster than the conventional EM algorithm. 
The convergence rates of these algorithms decrease as 
the difference between the Fisher information matrices 
associated with the CDS and the original data space in- 
creases. Therefore, given two possible choices of CDS, 
the one having smaller Fisher information is a better 
choice in terms of EM convergence rate. While a larger 
CDS may simplify the implementation of an EM algo- 
rithm, using a new data-processing inequality we show 
that it also has larger associated Fisher information and 
therefore slows the convergence of the algorithm. 

This work has been motivated by applications in emis- 
sion tomography [3-51 and in superimposed signals esti- 
mation [2]. In this summary we focus on the latter appli- 
cation, and show that not only can the asymptotic con- 
vergence rate be improved by using a space-alternating 
method, but also that using a smaller CDS leads to es- 
timates that are closer to the ML estimate at every iter- 
ation. This non-asymptotic result further highlights the 
practical importance of consideration of the size of the 
CDS in terms of computational requirements. 

GENERALIZED FORM EM ALGORITHM 

Given a measurement y, a realization of a random vector 
Y with density g(y; e), our goal is to compute the ML 
estimate of 8. In many problems, direct maximization 
of g over 8 is impractical.’ Our first generalization of 
the EM algorithm requires the following definition. 

Definition 1. A random vector X with density f(x; 0) is 
an admissible CDS for g(y; 8) if the joint density of X 
and Y satisfies 

21n the missing-data statistical problems that motivated [l], 
direct maximization was difficult because of the incompleteness 
of the actual measurements. The terms “complete” and “incom- 
plete” are less natural for most signal processing applications, but 
we adhere to this standard terminology. 
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where f(ylx) is independent of 8. 

The conditional density f(ylx) may include Dirac delta 
functions (as addressed in [SI). Thus (1) reduces to the 
conventional CDS definition when Y is a deterministic 
function of X.  The generalization (1) offers more flexi- 
bility in the choice of CDS, and is more natural for some 
signal processing applications with additive noise. 

Having identified an admissible CDS X, define the 
following conditional expectation and apply Bayes' rule: 

&(e; e) f E {log f(X;  e) IY = y ;  e} (2) 

= H ( e ;  e) + q e )  - ~ ( e ) ,  

H ( e ;  e) fi E { iogf(xIY = y;  e) IY = y; e} , 

(3) 
where 

A 
L ( 0 )  = logg(Y;@), 

w(e) 2 Jlogf(ylx) f(xlY = y ;8 )  dx. 

The generalized CDS (1) influences both H and W .  
However, since W ( e )  is independent of 8, the form of 
the "M-step" of the conventional EM algorithm [l] is 
unaffected, so we adopt the same two-step iteration as 
in [l]: 
E-st ep: 

M-step: 

Compute &(e; e'), 

e'+' = argmaxQ(8; e'), (4) e 
where 8' denotes the parameter estimate. after the ith 
iteration. Note that &(e'+'; e') 2 Q(@; e') implies that 

q e i + l ) - q e i )  2 q e i ;  ei)-H(ei+l; e') = o(ei+lllei), 

where 

denotes the nonnegative Kullback-Liebler distance [7]. 
Therefore (4) produces a monotonically increasing like- 
lihood sequence. 

EM CONVERGENCE RATE 

In this section we formalize the relationship between 
Fisher Information and the convergence rate of the EM 
algorithm. Full proofs can be found in [6]. For our pur- 
poses, the asymptotic convergence rate is defined by the 
R1 root-convergence factor [8]. The arguments in [l] for 

the conventional EM algorithm apply directly to (4), 
and show the following. 

Theorem 1: If X is a CDS inducing an EM algorithm 
whose sequence of estimates converges to @, then the 
root-convergence factor is given by: 

px = p (I - (Hxly + L)-lL) < 1, ( 5 )  

where I is the identity matrix, p ( )  denotes spectral ra- 
dius (largest absolute eigenvalue), L = -V2L(e*), and 
Hxly = -VZ0H(@; e*) is the nonnegative definite con- 
ditional Fisher information matrix [9, p. 1261. 

The following lemma links the "size" of Hxly to px. 

Lemma 1: UH1 and Hz are nonnegative definite, L is 
positive definite, and H1 2 H2 (i.e. H I -  Hz is nonneg- 
ative definite), then 

A 

A 

p (I - (Hi + L)-lL) 2 p (I - (Hz + L)-lL) . 
Finally, two admissible complete-data spaces XI and X Z  
can be compared using the following theorem, which 
is a Fisher Information version of the data-processing 
inequality. 

Theorem 2: If X1 and XZ are each an admis- 
sible CDS ( l ) ,  and if their joint density satis- 

f(XlIXz, y)  is independent of 8, then HxalY 5 HxllY, 
so from Lemma 1, pxa 5 pxl.  

In other words, if X2 is less informative about 8 than 
XI, then the EM algorithm for CDS XZ converges faster. 

SPACEALTERNATING GEM (SAGE) 

The above analysis strongly suggests that minimizing 
the information of the CDS is essential for improving 
convergence rate. In many applications, including most 
penalized-likelihood algorithms, one implements a gen- 
eralized expectation-maximization (GEM) rather than 
a pure EM algorithm [l]. GEM methods typically in- 
volve updating parameters in small groups while holding 
the others fixed, rather than updating all parameters si- 
multaneously. The conventional EM or GEM method 
uses the same CDS for each update. We propose in- 
stead to extend the GEM algorithm by relaxing this re- 
striction, allowing the update for each parameter group 
to correspond to a different CDS. Since the CDS for 
each group of parameters can often be made smaller 
than the CDS necessary for the entire parameter space, 
the resulting algorithms converge faster. Such a space 
alternating generalized EM (SAGE) algorithm will also 
monotonically increase the likelihood. 

fies f(Xz, x1 IY; 8) = f(X2 1x1, Y)f(Xl IY; 0) where 
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One application of the SAGE algorithm is in joint 
estimation of emission and transmission parameters in 
PET [5 ] .  Here, as a concise illustration of the SAGE 
method, we consider the following superimposed signal 
estimation problem: 

Y = A181 + A282 + E ,  

where E is additive zero-mean Gaussian noise with co- 
variance 27. Let Xp be a family of multivariate Gaussian 
distributions: 

(6) 

where p E [0,1]. Then by letting Y = [I I]Xp, we 
see that each Xp is an admissible CDS for (6). Thus 
there is a continuum of admissible complete-data spaces. 
The conventional EM algorithm for the CDS Xp can be 
expressed as the following simultaneous update: 

2 = C-’(y - Al8f - A28;) 

ei+l 1 = ei, + ~ ( A ’ , E - - ~ A ~ ) - ~ A ; ~  (8) 
8;” = 8; + (1 - P)(AaC-1A2)-1A’zZ. (9) 

When deriving the root-convergence factor for this iter- 
ation, one finds that the optimal p is 1/2 (consistent 
with the intuitive choice made in [2]). In that case 
px, = (1 + cos4)/2 = c0s2(4/2), where cos4 is the 
cosine of the complementary angle 4 E [0, ~ / 2 ]  between 
the signal subspaces spanned by A1 and A2. 

In contrast, our SAGE method alternates between us- 
ing CDS X1 for updating 81 and CDS XO for updating 
8 2 ,  which corresponds to using the minimally informa- 
tive choices. The algorithm is: 

2 = C-l(y - Al8f - A28;) 
e;+l = ef + ( A ; Z - ~ A ~ ) - ~ A ; ~  

2 = 27-l(y - A18;++’ -Azo$) 
0;” = 8; + (AiS’1A2)-1Ai2. (10) 

Here, the root-convergence factor is cos2 4, which is less 
than cos2 4. Comparing (9) and (lo), one sees that the 
step-size for the SAGE algorithm is larger than the con- 
ventional EM algorithm since p E [0,1]. This is reflected 
in the root-convergence factors, which are illustrated in 
Figure 1. The convergence rate for SAGE is siginficantly 
faster than that of the EM algorithm. For this Gaussian 
model, the SAGE algorithm is equivalent to alternating 
projections [IO]. 

GAUSSIAN NON-ASYMPTOTICS 

Is our discussion of asymptotic convergence rates rel- 
evant to algorithms that are terminated after a finite 

Figure 1: Comparison of root-convergence factors for 
conventional EM algorithm and proposed SAGE algo- 
rithm versus complementary angle between subspaces. 
The SAGE algorithm has a significantly improved con- 
vergence rate. 

number of iterations? In this section we show three 
non-asymptotic advantages of using a smaller CDS for 
the linear Gaussian model: 

Y - N(AB, IT). 

The goal is to compute the ML estimate of 8 from Y 
using an iterative method that avoids directly inverting 
A‘Il-lA. Assume Y E ?RNY, 8 E SN0,  A E W N y x N s ,  
Ny 2 Ne, and that A has full column rank Ne. 

When viewed as an incomplete-data problem, there 
are a multitude of admissible complete-data spaces that 
can be applied with different resulting EM iterations. 
Suppose X1 and X2 are each an admissible CDS for 
this problem, with distributions: 

where XL E ? R N k ,  CL E ? R N k x N e .  Also, assume X2 is 
“smaller” in the sense that 

where G E % N a x N 1  and N2 5 NI. Of course, for Xk to 
be “complete,” we assume that NL 2 Ne , k = 1,2, and 
that and that CL has full column rank Ne. 

For Xk to be admissible, it suffices for there to be BL 
and NL such that 

Y = BLXL + NL, (12) 

where Bk f gNYXNk is independent of 8,  Nk - 
N ( 0 ,  Il - BLCLBL), and NE and xk are uncorrelated 
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[SI. Under the additional assumption of linearity be- 
tween Y, X, and 8,  condition (12) is also necessary. 
Using the properties of conditional normal distributions, 
one can derive the following EM algorithm: 

e:+-' = e', + (C~CkiCk)-lA'flT-'(y - AB',). 

First note that it is clear from this recursion that the 
asymptotic convergence rate is 

p(I - (Fx,lY + F Y ) - ~ F Y )  = ~ ( 1  - F ~ ~ F Y ) ,  (13) 

where Fx, = c;C,'ck and Fy = A'n- 'A are the 
Fisher information matrices of Xk and Y respectively. 
(Note that these matrices are independent of 6 and 
Y.) From (11) and Theorems 1 and 2 it follows that 
FxalY 5 Fx,ly and the asymptotic convergence rate of 
the EM algorithm for to XZ is faster than that of XI. 
Note that here we also have Fxa 5 Fxl, so the faster 
algorithm corresponds to smaller (unconditional) Fisher 
Information as well. In the remainder we focus on the 
early iterations. 

Theorem 3: llB: - B011 3 110: - Boll, i.e., the EM algo- 
rithm for the smaller CDS takes a bigger first step. 
Proof: B:-B0 = FG:[A'n-'(y-AB')], so it suffices 

to show that FGi 2 F,:. This follows from Fxa 5 Fxl 

So the iterates for the smaller CDS take the lead from 
the starting line. Do they stay ahead? The next two 
theorems confirm that they do. Defining the whitened 
residual: ck = lI-l/'(y - AB',), it is easily verified that 
e:" = Mkei ,  for the "transition matrix" 

using positive definiteness. 0 

Mk = I - fl-'/2AFx:A'n-i/2. 

For the normal model, smaller residual norm corre- 
sponds to higher likelihood. 

Theorem 4: For Xi and XZ defined above and lead- 
ing to the transition matrices MI and Mz, IIM&c0II 5 
IIM",'ll, i.e., the likelihood is higher after every itera- 
tion, regardless of  initial estimate, for the smaller CDS. 
Proof: By symmetry, it suffices to show llMzII 5 

IIM111, i.e. Mz 5 M i .  Since 

CDS are closer to the ML estimate at every iteration 
than those of the larger CDS. 
Proof: Since di+' = (I - F:/2F;:F:/')d',, again the 

0 
We have shown that a smaller CDS not only yields 

faster asymptotic convergence, but also takes a larger 
step the first iteration, and yields iterates with higher 
likelihood and that are closer to the ML estimate every 
iteration. Theorems 3-5 do not generally follow from 
the asymptotic results alone; the fact that they are true 
here is a strong indication of a fundamental link between 
the size of the CDS and the convergence rate of an EM 
algorithm. This has significant practical implications for 
problems such as tomographic reconstruction where the 
complete data spaces are generally very large. 

result follows from F;: 2 F,:. 
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Theorem 5: For dl and dz defined above, lld$11 5 
lldill V i ,  i.e., the iterates corresponding to the smaller 
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