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ABSTRACT 

We describe a hybrid measured/calculated method for 
attenuation correction in positron emission tomography 
(PET). This unified reconstruction/segmentation method 
is based on a penalized weighted least-squares (PWLS) 
objective function that is minimized using iterative 
coordinate-descent (ICD). Two penalty functions are com- 
pared; one for a discrete object parameterization, the other 
for a continuous parameterization. Simulations demon- 
strate that the methods can reduce the additional emission 
image variance typically introduced by noisy attenuation 
correction factors (ACFs). 

I. INTRODUCTION 

Correction for attenuation in PET is essential for both 
quantitative and visual tasks. In principle, ACFs com- 
puted from the ratio of a blank scan to a patient transmis- 
sion scan should accurately compensate for attenuation. In 
practice, measurement noise in both scans produce noisy 
ACFs, which propagates additional variance into the re- 
constructed emission images. 

The conventional solution to this noise problem is to ac- 
quire disproportionately lengthy transmission scans and to 
smooth the blank and transmission scans. Indiscriminate 
smoothing can produce systematic errors in the emission 
image. Nevertheless, some sort of smoothing is both neces- 
sary and desirable. To illustrate, consider a high-resolution 
system such as a CTI 931 with its 50,000 lines of coinci- 
dence. The transmission coincidence events are divided 
among this large number of rays, so the relative accuracy 
of each measurement is low. Since it is unlikely that the 
attenuation map requires 50,000 degrees of freedom to de- 
scribe adequately, there must be redundancy in the mea- 
surements. Linear smoothing is one simple but suboptimal 
attempt to exploit this redundancy. The reconstruction- 
reprojection method is a somewhat more sophisticated ap- 
proach that also reduces the degrees of freedom. (If the 
attenuation map is reconstructed within a circle in a 12tj2 
image, then there can be at most about 13,000 degrees of 
freedom in the reprojected ACFs.) One hopes to reduce 
the noise by eliminating degrees of freedom without induc- 
ing the systematic biases inherent to linear smoothing. 

The method proposed in this paper reduces the degrees 
of freedom by exploiting two properties of attenuation 
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maps: (i) they are composed of a relatively small num- 
ber of fairly homogeneous tissue classes, such as air, lung, 
soft tissue, and bone, and (ii) except at boundaries be- 
tween tissues, neighboring voxels tend to be composed of 
the same tissue class. 

These properties have been used implicitly and explicitly 
by several investigators, almost exclusively through a se-  
quential three-step process: (1) reconstruct using FBP an 
attenuation map from the logarithm of the ACFs, (2) pro- 
cess that attenuation map, and (3) reproject the attenua- 
tion map to form new ACFs. Huang et al. laid the ground- 
work for these methods by demonstrating the efficacy of 
segmenting an attenuation map into discrete classes. How- 
ever, the manual adjustments of that segmentation method 
are impractical for routine use. 

Recent attempts to  automate the segmentation still suf- 
fer from the fundamental limitation of such sequential ap- 
proaches: FBP produces streak artifacts when applied to 
low-count transmission data. Therefore, we propose a uni- 
fied reconstruction/segmentation method that iteratively 
estimates a segmented attenuation map directly from the 
transmission data. This method makes better use of the 
statistical information in the transmission measurements. 

In order to explore the bias-variance tradeoffs of these 
methods, we have performed a preliminary investigation 
using two extremes for the attenuation parameterization. 
One method is based on a discrete parameterization in 
which each voxel takes one of K tissue types, i.e., a literal 
interpretation of property (i) above. The other method 
allows each voxel to vary over the continuous set of non- 
negative attenuation coefficients, thereby accommodating 
partial volume effects, but not making use of property 
(i). Understanding the limitations of these two extremes 
should facilitate designing intermediate methods that ex- 
ploit property (i) while allowing for partial volume effects. 

11. THEORY 

A statistical approach to image reconstruction requires five 
components: (i) a finite parameterization of the object 
(attenuation map), (ii) a system model that relates the 
attenuation map to  ideal measurement values, (iii) a sta- 
tistical model that describes how the actual measurements 
vary about their ideal values, (iv) an objective function 
that is to be maximized to estimate the attenuation map, 
and (v) an algorithm, typically iterative, for maximizing 
the objective function, including an initial estimate and 
stopping criterion. This section describes the reconstruc- 
tion/segmentation methods in terms of these components. 
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A .  Object Parameterization 
Let ~ ( g )  denote the spatial distribution of attenuation co- 
efficients within the patient. We assume this distribution 
can be approximately decomposed into rectangular voxels: 

PM C ~j I j  (41, (1) 
j 

where p j  denotes the mean attenuation coefficient in the 
j t h  voxel, and I,@ is the indicator function with the j t h  
voxel as its support. For this approximation to be valid, 
the voxels must be sufficiently small. An natural gener- 
alization of this parameterization to  account for inhomo- 
geneity within voxels would be to adopt a “mixel” model. 

B. System Model 
For a transmission scan, the patient is surrounded by a ring 
containing a positron-emitting radioisotope. If the ring 
emits a pair of annihilation photons along a chord that in- 
tersects the ith detector pair, then a coincidence event oc- 
curs provided that both photons escape unabsorbed. If the 
detectors are small relative to attenuation map inhomo- 
geneities, then this survival probability is approximately 

ai F* exp(-li), (2) 

where li is the effective attenuation path length along the 
chord between the ith pair of detectors. We assume this 
length can be expressed: 

li = P ( d  dZ (3) J,. 
where Si denotes the strip integral over the ith detector 
chord. Other authors have used line integrals rather than 
strip integrals, but the finite width of PET detectors makes 
strip integrals more plausible. An even more accurate sys- 
tem model would account for noncollinearity of the anni- 
hilation photon pairs and for inter-crystal mispositioning 
errors in block detectors. 

Under the discretization ( l ) ,  we can rewrite (3) as 

li = C a i j P j ,  (4) 
j 

where 
a i j  = Li I j  (z) &- (5) 

We precompute and store the nonzero elements of A = 
{ a j j  } using the ASPIRE software library, which signifi- 
cantly reduces the reconstruction time. 

C. Statistical Model 
Ideally, the statistical model describes the distribution of 
each measurement about its mean, and consequently deter- 
mines a measure of similarity between the actual measure- 
ments and the calculated projections of image estimates 

from (4). The CTI 931 at our institution uses real-time 
subtraction of delayed-window coincidences to correct for 
accidental coincidence (AC) events in its routine opera- 
tion. This subtraction process produces negative sinogram 
bins that clearly invalidate the usual Poisson model. We 
present a more realistic Poisson-difference model below. 
Because the likelihood for this Poisson-difference model is 
intractable, we propose a simple weighted, transformed, 
least-squares similarity measure. 

Let B; denote the ith detector measurement for the 
blank scan. For a system employing real-time delayed- 
window AC event correction, the following statistical 
model is reasonable: 

Bi - PoiMn{d(bi + r:)} - Poisson{rbr:}, 

where 7‘ denotes the time duration of the blank scan, bi 

denotes the product of detector efficiency and photon flux 
on the ith detector pair, and rf denotes the AC event rate 
during the blank scan (typically very small). Similarly, 
after the patient is put into the PET scanner, a reasonable 
model for the transmission scan measurement is: 

- Poisson{r‘(bia;(I + s i )  + T : ) }  - Poisson{r’rf] 

where rt denotes the time duration of the transmission 
scan, ai was defined by (2), and Si denotes the fractional 
increase in direct coincidence events due to  scatter within 
the patient. 

Unfortunately the individual AC event rates r: and rj 
are not available, which appears to preclude using an exact 
likelihood as a similarity measure. For this reason, and for 
computational simplicity, we propose to forgo a likelihood 
approach in favor of a quadratic approach based on the 
first two moments. The result is an approximate similarity 
measure that nevertheless performs remarkably well. 

The first step is to apply a logarithmic transformation. 
Let { b j }  and { t i }  denote the measured realizations of the 
random variables {B; }  and {Z}. Then a (noisy) estimate 
of l i ,  the strip integral of attenuation between the ith de- 
tector pair, is given by 

{ 0, otherwise Yi = 

where si is an estimate of the scatter fraction. For simplic- 
ity, in the remainder of this paper we assume si = 0. Using 
a Taylor’s expansion for the logarithmic transformation of 
a Poisson variate, one can show that 

log (3) - log (+) + log(l+ i i ) ,  t i  > 0, bi > o 

g,7~ = ( b i t i ) / ( b i  + t i ) ,  ti > 0, bi > O { 0, otherwise 

is an estimate of the Fisher information (l/variance) of 
yi. Let p = [C1l,pzr.. .I’ denote the vector of unknown 
attenuation coefficients. We propose to use the following 
weighted least-squares (WLS) similarity measure: 

D(P) = (Y - A P ) ’ W Y  - ACL) (6) 



where y = [ y l ,  y 2 , .  . .]’, and E-’ is a diagonal matrix with 
elements u - ~ .  The similarity measure proposed by Sauer 
is similar, except that we have included the blank scan 
variance bi .  That variance can be non-negligible for poor 
efficiency detectors. 

D. Objective Function 
Although one could minimize (6) to estimate p from the 
transformed data y, it is well known that objective func- 
tions based solely on similarity measures such as (6) per- 
form poorly due to the ill-conditioned nature of tomo- 
graphic reconstruction. To remedy this problem, we have 
investigated two regularization methods. Both methods 
exploit the spatial correlation of attenuation maps through 
smoothness penalties, but they are based on different pa- 
rameterizat ions. 

The first method is based on a discrete parameterization 
of the attenuation map, i.e., we reduce the domain of p. 
Assume that there are K classes of attenuation coefficients 
with nominal values 8 = [ 8 1 , .  . . , OK]’. We assume that jij, 
the attenuation coefficient in the j t h  voxel, is one of the 
K values (01,. . . , 0 ~ ) .  Let zj indicate the class of the j th  
voxel, i.e., pj = e=,, where zj takes values I ,  2 , .  . ., K .  An 
explicit notation for this parameterization is p(x,  8 )  where 

We assume K is known, although information theoretic 
approaches can in principle be used to determine K .  

To exploit the second property, we use a penalty function 
that encourages neighboring pixels to be of the same class. 
Specifically, 

where N, is the set of eight neighbors of the j pixel. The 
weights w ’ k  equal 1 for horizontal and vertical neighbors, 
and l/d for diagonal neighbors. This type of penalty 
function is often presented as a Bayesian ”prior” for the 
ensemble of voxel classes. We do not adopt that philosophy 
here since we have no evidence that the Gibb’s distribution 
corresponding to (8) resembles the ensemble statistics of 
attenuation maps. 

In the presence of object-dependent scatter, etc., one 
may wish to simultaneously estimate the attenuation coef- 
ficients 8 of the K classes from y. A penalty function for 
this parameter estimation is also useful: 

K 
R2(@) = w k ( 0 k  - e k ) 2 ,  

k = l  

where e k  denotes the ideal attenuation coefficients and W k  

denotes weights that reflect their uncertainties. 
Combining the WLS similarity measure with the above 

penalty functions yields the following objective function: 

@u(x, 8 )  = D(Cc(x; e)) + PRl(X) + R 2 ( 8 ) ,  (9) 

where /3 controls the influence of the smoothness penalty, 
in analogy with the filter window that must be chosen for 
FBP reconstruction. 

Having defined this objective, our goal is to estimate x 
and 8 from y: 

The second method is based on a continuous parameter- 
ization for p, and is described by the following objective 
function: 

where the weights wjj1 are defined as in (8). 

E. Iterative Algorithm 
The objective functions and CP, are minimized by it- 
erative coordinate-descent (ICD). The ICD algorithm u p  
dates each image parameter individually by minimizing the 
objective function over that parameter while holding the 
other parameters fixed. Nonnegativity is easily enforced 
in this paradigm. The algorithm is globally convergent 
for the continuous parameterization, but only locally con- 
vergent for the discrete parameterization. We have had 
best results when initializing the discrete algorithm using 
the results from the following image-domain segmentation 
met hod. 

111. SEQUENTIAL METHOD 

If the transmission counts are high enough, a sequential re- 
construction/segmentation method may be adequate. One 
approach to this is the following. First perform a FBP re- 
construction of the attenuation image from y. Let f denote 
this (noisy) image. The attenuation image f is then seg- 
mented to form an attenuation map p in image space using 
the following objective function: 

where R1 and R 2  were defined above. This objective func- 
tion is also minimized using ICD. Since the system matrix 
A is not used, the sequential method requires less compu- 
tation. 

IV. EPILOGUE 

The above sections outline the methods presented at the 
conference. Due to the limited space, full details, includ- 
ing results and bibliography, will be presented in a sepa- 
rate manuscript. The author gratefully acknowledges he lp  
ful discussions with Neal Clinthorne, Ken Koral, and Les 
Rogers. 
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