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Abstract
Parametric model -based approaches to 3 -D reconstruction of vessels overcome the inherent problem of un-

derdeterminancy in reconstruction from limited views by incorporating a priori knowledge about the structure
of vessels and about the measurement statistics. In this paper, we describe two extensions to the parametric
approach. First, we consider the problem of reconstruction from a pair of bi -plane angiograms that are ac-
quired at different projection angles. Since bi -plane angiography systems are widely available, this is a practical
measurement geometry. The patient may move between acquisitions, so we have extended our model to allow
for object translation between the first and second pair of projections. Second, we describe how to accurately
estimate the dimensions of a aneurysm from the dual- biplane angiogram.

We applied the new algorithm to four synthetic angiograms (projection angles 0 °, 20 °, 90 °, and 110 °) of a
vessel with a small aneurysm and an eccentric stenosis. The angiograms were corrupted by additive noise and
background structure. Except near the top and bottom of the aneurysm, the estimated cross sections of the
aneurysm and stenosis agree very well with the true cross sections.

1. INTRODUCTION

3 -D reconstruction of arterial trees from a few projections is important for quantitative diagnosis and for
surgical planning. Reconstruction from limited projections is severely underdetermined in general, which leads to
unacceptable artifacts in images reconstructed by conventional approaches. When the projected objects are blood
vessels, one can overcome this problem by incorporating a priori knowledge about their structure. Non -parametric
reconstruction approaches incorporate constraints such as positivity, connectedness, boundedness, and sparseness.
These methods are better than conventional methods, but they still require many views. In applications where
only a few views are available, parametric model -based reconstruction approaches [1, 2, 3, 4, 5] seem the most
promising.

Parametric approaches are based on 3 -D modeling of objects (vessel trees). By combining an object model with
a statistical model for projection imaging, one can formulate the reconstruction problem as a Maximum Likelihood
(ML) estimation problem. This estimation problem can be efficiently solved with a hierarchical algorithm for
multiple object reconstruction [6, 7]. Parametric approaches have the advantage that important diagnostic factors
such as percent stenosis can be directly computed from the reconstruction.

We use an elliptical model for vessel cross sections. Bresler [8] has shown that reconstruction of an arbitrary
ellipse distribution requires at least three views, but his analysis was for ideal projections. Our experience has been
that at least four views are needed, since real images are corrupted by noise, blurring, and background structures,
Note that in some applications, only the transverse areas and skeletons of the vessel tree may be needed. These
quantities can be computed from only two views [5].

In this paper we describe an algorithm for vessel reconstruction from a particular arrangenirnt of four views
that we call "dual bi -plane angiograms," two bi -plane angiogram pairs acquired at different projection angles. Bi-
plane angiography systems are widely available; they consist of two X -ray source -detector pairs that are (almost)
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simultaneously activated to acquire two orthogonal views. We assume that two views are acquired at angles 0° and
90 °, the X -ray gantry is rotated by 0r, and two more views are acquired at angles Or and 90° -F Os.. For theexample
presented in Section 5, we used Or = 20 °. More experimentation is needed to determine the minimum rotation
angle.

Ideally, the patient would be motionless between the two acquisitions. Since this is not realistic, we have extended
our model to allow for lateral translation of the vessels between the acquisitions. In this paper, we demonstrate
that the parametric reconstruction paradigm easily accommodates the two additional degrees of freedom due to the
translation. For the best results, one should still minimize vessel motion by gating the acquisitions to the heart,
and by performing the acquisitions within a breath holding interval.

If the X -ray gantry rotates too slowly, two contrast agent injections may be required. The imaged vessels could
then have different contrast densities in the two acquisitions. This additional degree of freedom could also be
incorporated into the model, though we do not do so here.

In this paper we also present an algorithm for reconstruction of vessels with aneurysms. An aneurysm is a sac
formed by local enlargement of the weakened wall of an artery. Interventional procedures, such as detachable em-
bolization, where small balloons are left inflated within an aneurysm, would benefit from a quantitative description
of the aneurysm geometry. Although aneurysms can be quite irregularly shaped, the elliptical model is sufficient
for determining balloon size and placement.

To simplify notation, we describe the algorithm for reconstruction of a single vessel with a single aneurysm.
The full hierarchical approach [7] to multiple object estimation can be applied when it is not possible to isolate a
single vessel.

In Sections 2 and 3, we describe the object model and the measurement model. In Section 4 we outline the
algorithm for reconstructing a vessel with an aneurysm. In Section 5 we discuss the results of a phantom study.

2. OBJECT MODEL

Vessels are well modeled as generalized cylinders [9], a collection of stacked primitives. A primitive is a "pill
box" with an elliptical cross section and with a height that depends on the imaging resolution (usually 1 pixel). The
elliptical cross section model is a reasonable tradeoff between simplicity and versatility. Pappas [4] has demonstrated
the accuracy of the elliptical model by comparing the cross sections of excised stenotic vessels with their best fit
ellipses. Though the accuracy of the elliptical model will decrease if the vessels are tilted severely away from
vertical, proper positioning of the patient can minimize this problem.

An elliptical primitive has three shape parameters: radius, eccentricity, and orientation, denoted r,.\, and 0
respectively. Let 1/, _ [r a 0]. To allow for changing bolus concentration, each primitive has its own linear
attenuation coefficient, denoted a. The vertical position of a primitive is denoted by the index z, where z = 1 is
the top scan line of the projections, and z = N is the bottom scan line. Let (Ce, Cy) denote the coordinates of the
center of the primitive during first bi -plane acquisition, and let (Cr,, -F Ox, Cy + Ay) denote the coordinates for the
second bi -plane acquisition, where (Ox, Ay) is the unknown lateral translation. We use P(z) to denote the eight
parameters of the elliptical cross section of the vessel at slice z, i.e., P(z) = [Cx(z) Ax(z) Cy(z) Ay (z) il.'(z) c (z)]

[pi(z) ... p8(z)].
An object is defined by a set of primitives with an index set that indicates the extent of the object. Let

S = {P(z) : z E Z }, where Z _ {1, ... , N }. S is the set of (unknown) primitive parameters for the vessel.
(For simplicity, we assume the vessel transverses the entire image.) We consider the aneurysm to be a separate
object, and denote its set of primitive parameters by Sa = {Pa(z) : z E Za }, where Za = {zi, ..., z2 }. z1 and z2
are the top and bottom indices of the aneurysm. In the current implementation, these indices must be identified
by the user, which is easily done with a mouse and cross -hairs on a video display.

Blood vessels are smoothly shaped objects, which means that the primitive parameters P(z) are smooth func-
tions of z. An effective reconstruction method must incorporate this a priori knowledge into its object model. Our
approach [10] is to use an object prior that is based on the non -parametric "roughness penalty" formulation of
cubic -spline smoothing [11], and on the regularization ideas of machine vision [12]. Ifan object i' composed of a
set S of primitives with index set Z, S = {P(z) : z E Z }, then the object likelihood is

8 max(Z)

Lo (S) = - wi J Pg (z) dz.
i-1 min(Z)

(1)
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This prior assigns the highest likelihood to the smoothest objects, since the second derivative is related to curvature.
This is not to say that wiggly objects will be excluded; in fact, the weights wi will be determined from the data
itself (Appendix B). Thus the algorithm will adapt to vessel abnormalities such as stenoses.

3. MEASUREMENT MODEL

In this section, we present a statistical model for the projection measurements. We assume that the measure-
ments are line -integral projections from a point source. We account for the lateral magnification due to the point
source, but neglect the vertical magnification, requiring that the object be approximately centered vertically. The
projections are assumed to be digitized images of dimension N x T pixels. We use ye(t; z) to denote the measured
projection at angle 0, with the convention that the index t varies from -T /2 to T/2 across each row of the image.
The measurement model is identical for each slice, so we drop the vertical index z in the description below.

Fig. 1 shows the ideal dual bi -plane projections of a primitive with parameters P = [Cx Ox Cy Ay r A 0 a].
Each signal se,,, (t; P) is a semi -ellipse pulse that is offset from the center of the projection by Tm, where

and

Tm = T(xm.,ym,em),

e1 0°, 02 90°, 03 t7r, 04 90° + Br,

xl=x2=Cr, x3=x4=Cx+Ox, yl=y2=Cy, y3=y4=Cy+Ay,
T(x, y, B) = 1Lf (x, y, B) (x sin(B) - y cos(©)),

saM(x, y, e)
s° + (x cos(0) + y sin(0))

M is the position dependent magnification due to the point source model. sd is the source -to- detector distance. s°
is the distance from the source to the rotational center of the gantry (coordinate (0,0) in Fig. 1). The mathematical
form of the ideal projection at angle 6m is

(2)

ge,n(t,P) = le em(0)

sem (t; P) = a ge,,, (t - Tm; P),

(M(xm,ym,m)aem())2 ( 11
\ 2M(x+n, Jm, em) ae,.. () /

(3)

where a9(0) = r Ae ('), /0(1k) = 2r/ Ae (i), A0(0) = [(A + 1 /a) - (a - 1 /.\) cos(2(0 - 9))]/2, and II(x) =
1 {IxI <1/2}

The actual measured projections suffer from blurring, undesirable background structures, and measurement
noise. These aberrations are captured by the following measurement model for the projection at angle 9:

ye (t) = se (t; P) * h(t) + be (t) + ve(t), (4)

where h(t) is the imaging point spread function, be(t) is an unknown smoothly varying background, and ve(t) is
additive white Gaussian noise (AWGN) with (possibly unknown) variance o2.

The choice of background model be determines the applicability of the reconstruction algorithm described in
the next section [10]. We assume that be is varying smoothly, so that locally (i.e., near the projection go), it can
be well approximated by a line. If the pulse go is centered about T, then we assume

= ße, It - TI < W
arbitrary, otherwise

(5)

where W is a constant that is slightly larger than the radius of the largest possible vessels. Let ß = [ße, ,ß9J.
Because of the AWGN model (4), the likelihood of a particular primitive P and set of background coefficients

ß, given the primitive's four projections, is the squared error between the measured projections and the projections

1It may seem like a a better background model would include an affine term as well as the DC term. In fact, the two models result
in identical estimation algorithms. Since the semi -ellipse function is symmetric, it is orthogonal to affine functions [10].
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computed from the parameters using (3), (4), and (5). The background coefficients are nuisance parameters, so we
define the primitive likelihood to be

Lp(P(z) I Y(z)) = - min E f lye,,, (t; z) - ag'Bm (t - Tm; P(z)) - [39.12 dt, (6)
m_i m

where Im _ [Tm -W, rm + W], Y(z) = {yem(t; z) }ni =1, and gem = gem, * h. This measure assigns the highest
likelihood to the primitives whose projections best agree with the measurements.

Since we assume the measurement noise is independent from line to line, the measurement likelihood of a set
of primitives S with index set Z is

LM(S) _ E Lp(P(z) I Y(z))
zEZ

4. RECONSTRUCTION ALGORITHM

4.1. Single object reconstruction

(7)

Consider first the problem of reconstructing a single object, with primitive set S and index set Z, from its pro-
jections. Combining the object and measurement model described above, one can show the reconstruction problem
is equivalent to the problem of finding the set of primitives that maximize the sum of the object likelihood (1) and
the measurement likelihood (7):

SML = arg msaxLo(S) -- LM(S I {Y(z) : z E Z }).

This solution is globally optimal [3], but it is impractical to compute since the parameter space is very large.
Instead, we use a two step procedure, similar to the hierarchical algorithm of Bresler [7]:

S = arg maxLM(S),

= arg maxLo(S) - S -S II, (8)

where II S -S II = >zEZ EP=1 I xP - xPI2. The first step is to maximize the measurement likelihood of the
primitives. Since the measurements are independent (7), each primitive is estimated independently using the
procedure given in Appendix A. Since the object smoothness prior has not been incorporated, these primitive
estimates will be rough. The second step is then to smooth the initial set of primitives, using the spline smoothing
algorithm described in Appendix B. We have shown empirically that this approach compares favorably with an
optimal algorithm [6].

4.2. Reconstruction of a vessel with an aneurysm
The two step procedure (8) is easily adapted to the problem of reconstruction of a vessel with an aneurysm.

The key is that spline smoothing can be applied even when the measurement samples are non -uniform or have
gaps. This suggests the following algorithm for reconstruction with aneurysms:

S = argmaxs LM(S I {Y(z) : z E Z & z Za }). Apply the procedure in Appendix A to find the ML
vessel primitive estimates on all slices except where the aneurysm is located.

S = arg maxs Lo (S) - S -S II. Smooth the vessel primitive parameter estimates using the spline
smoothing algorithm of Appendix B.

Y'(z) = Y(z) - Projection(P(z)), z E Z. Subtract the computed projections of the estimated vessel from
the angiograms.

Sa = arg maxs LM(S I {Y'(z) : z E Za }). Estimate the aneurysm primitives from the modified angiograms.

Sa = arg maxs Lo (S) - II Sa -S I I . Smooth the aneurysm estimates.
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The vessel and aneurysm estimates, S and Sa, are the final parametric reconstruction. The estimated objects
can be reprojected in any direction, displayed in a 3 -D format, displayed in cross section, and used for quantitative
diagnosis and surgical planning. Cross sections perpendicular to the vessel axis can also be computed from the
estimates.

5. PHANTOM STUDY

We applied the above algorithm to synthetic angiograms of a vessel with an eccentric stenosis and a small
aneurysm. The true primitive parameters were generated by hand, and the ideal projections were computed
using (3). We added pseudo- random Gaussian noise with variance 4 to the projections. We also added a smoothly
varying background (a 2 -D Gaussian function) to simulate the intensity falloff that often occurs in real angiograms.
Fig. 2 shows one of the two pairs of bi -plane angiograms. Each projection image is 128 x 128 pixels. For the other
pair, at angles 20° and 110° the objects were shifted by Ox = 6 and Ay = 8 pixels. The signal to noise ratio ofthe
data, defined by l (9) /o, is about 5. At this signal to noise ratio, non -parametric approaches based on numerical
derivatives would be biased [4]. The execution time for the algorithm was about five minutes on a Sun 3.

Figs. 2 -6 illustrate the progress of the reconstruction algorithm. From a video display, it was clear that the
aneurysm is limited to scan lines z = 106, ... ,113. Fig. 3 shows the initial primitive estimates for the other scan
lines. Projections of the smoothed vessel estimates are shown in Fig. 4. These projections were subtracted from
the original angiograms, resulting in Fig. 5. The total disappearance of the vessel is evidence of the accuracy of the
reconstruction. A 3 -D display of the reconstruction is currently unavailable, but the outline of the reprojection of
the reconstructed objects (in black) is superimposed on the projections of the true objects in Fig. 6. For diagnosis,
the most useful displays are probably Fig. 7 and Fig. 8, which compare the true and estimated cross sections of the
aneurysm and of the vessel stenosis. The average percentage error in the aneurysm area for the middle six slices
was 6.0 %, but the error was much higher for the outermost cross sections, where the ellipse is only 4 or 5 pixels
across. For these cross sections, the SNR is only about 2.

Appendix A. SINGLE PRIMITIVE ESTIMATION

In this appendix we describe the procedure for estimating a primitive from its four projections. Since we are
considering only a single slice, the index z is dropped. Given projections Y = {yem }4,7.,-1, the goal is to find the
primitive parameters P that maximize the primitive measurement likelihood (6). We will also have to estimate the
nuisance parameters O.

There are eight primitive parameters and four background coefficients to estimate, so a global parameter search
is impractical. Furthermore, since the support of the semi -ellipse functions is only a small fraction of each mea-
sured projection, the likelihood space has many flat regions that confound conventional hill climbing algorithms.
Therefore, one must use a maximization procedure tailored to this problem.

Fortunately, the background coefficients and the attenuation cr are all quadratic in (6), so we can solve for them
analytically in terms of the other parameters and substitute the expressions back into (6). The result is that the
ML estimates of P maximize

where

4 lm_1 JI,, yem(t)gém(t - Tm P)dt - Am(gé,,,(t - Tm; P))Am(ye,n))2
Emle,,.) - Am(y9,,,)) ¡ r (9)

m=1( E(gem(t - Tm P)) - Am(gg (t - Tm P))2

2W JI
%(t) dt, and Em(f) - Jim f 2(t) dt.

For efficiency, the terms involving only ge,n are precomputed using (3).
We have found empirically that the position estimates (Ce, Cy, Az, Ay) are insensitive to errors in the shape

estimates (g,). Therefore (9) can be efficiently maximized by using the following procedure:

Initialize the shape estimate using the shape estimate from the previous slice.

Maximize (9) over the position parameters: Cz, Cy, Ax, and Ay.

Fine tune the shape estimate using the new position estimates.
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the original angiograms, resulting in Fig. 5. The total disappearance of the vessel is evidence of the accuracy of the 
reconstruction. A 3-D display of the reconstruction is currently unavailable, but the outline of the reprojection of 
the reconstructed objects (in black) is superimposed on the projections of the true objects in Fig. 6. For diagnosis, 
the most useful displays are probably Fig. 7 and Fig. 8, which compare the true and estimated cross sections of the 
aneurysm and of the vessel stenosis. The average percentage error in the aneurysm area for the middle six slices 
was 6.0%, but the error was much higher for the outermost cross sections, where the ellipse is only 4 or 5 pixels 
across. For these cross sections, the SNR is only about 2.

Appendix A. SINGLE PRIMITIVE ESTIMATION

In this appendix we describe the procedure for estimating a primitive from its four projections. Since we are 
considering only a single slice, the index z is dropped. Given projections Y — {2/0 m }m=i> the Soa^ ls to find the 
primitive parameters P that maximize the primitive measurement likelihood (6). We will also have to estimate the 
nuisance parameters (3.

There are eight primitive parameters and four background coefficients to estimate, so a global parameter search 
is impractical. Furthermore, since the support of the semi-ellipse functions is only a small fraction of each mea­ 
sured projection, the likelihood space has many flat regions that confound conventional hill climbing algorithms. 
Therefore, one must use a maximization procedure tailored to this problem.

Fortunately, the background coefficients and the attenuation a are all quadratic in (6), so we can solve for them 
analytically in terms of the other parameters and substitute the expressions back into (6). The result is that the 
ML estimates of P maximize
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For efficiency, the terms involving only ge m are precomputed using (3).
We have found empirically that the position estimates (Cx , Cy , A*, A y ) are insensitive to errors in the shape 

estimates (VO- Therefore (9) can be efficiently maximized by using the following procedure:

  Initialize the shape estimate t/> using the shape estimate from the previous slice.

  Maximize (9) over the position parameters: Cx ,Cy , Ax , and A y .

  Fine tune the shape estimate using the new position estimates.
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The second step of this procedure has been studied by Rossi [2], in the case where Ar = Ay = O (no primitive
movement allowed). In this case, the second step involves a form of (likelihood) convolution backprojection. Each
projection is convolved with the semi -ellipse pulse gem, and the result is backprojected. The position of peak of the
backprojection is the ML estimate of (Cr, Cy). In our case, there are four position parameters Cr, Cy, Ar and Ay,
and four shift parameters r1i ... , 74, which have a one -to -one correspondence (2). Hence, finding the best position
parameters for the second step of the procedure given above is equivalent to finding the best set of Tm's. The ML
estimate of Tm is the position of the peak of the convolution of gem with yem, i.e., the classical matched filter.
This operation is easier to compute than the convolution backprojection. Thus, although we have complicated
the object model by allowing primitive translation, the resulting estimation algorithm is simplified. However, to
achieve the same estimation accuracy, a higher signal -to -noise ratio is required in our case, since we are estimating
more parameters.

Appendix B. SMOOTHING PRIMITIVE ESTIMATES

In this appendix, we show that the second step of procedure (8) is equivalent to spline smoothing of the
parameter estimates. In general, given a set of data pairs (z, fz), an index set Z, and the model fz = g(z) r(zj

where r)z is normally distributed measurement error, the smoothing- spline estimate [11] of g is

max(Z)¡
= arg min fz - g(z) I2 + w g (z) dz.

zEZ min

minimizing function g is a natural cubic spline, and can be easily computed [13]. The weight w is determined
using cross validation or related methods [11., 14]. Since cubic splines are piecewise cubic polynomials, we can
evaluate the estimate g at all values of z, not just the values in Z.

By the definitions of Lo and II S -S

S= arg msxLo(S)-11 S -S

is equivalent to
8 8 max(Z)

P = arg inE E Jp (z) - pi (z)12 + E wi J i (z) dz. (10)
i =1 zEZ j =1 min(Z)

Since ML estimates pz (z) are approximately normally distributed, (10) is equivalent to eight spline smoothing
problems, one for' each parameter. This is the approach used for the simulation. We are currently investigating a
new approach that would simultaneously smooth all the parameters [15].
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Figure 1: Dual bi -plane projections of an elliptical primitive.
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Figure 1: Dual bi-plane projections of an elliptical primitive.
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Figure 2: One of the two pairs of simulated bi -plane angiograms. Left: O = 0 °, right: O = 90 °.

Figure 3: Projections of vessel primitive estimates S before smoothing. Left: O = 0 °, right: O = 900.

SPIE Vol. 1092 Medical Imaging III: Image Processing (1989) / 29

Figure 2: One of the two pairs of simulated bi-plane angiograrns. Left: 0 — 0°, right: 6 = 90°.

Figure 3: Projections of vessel primitive estimates Sv before smoothing. Left: 0 = 0°, right: 0 = 90°.
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Figure 4: Projections of vessel primitive estimates S after smoothing. Left: O = 0 °, right: B = 90 °.
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Figure 5: Difference between original angiograms and smoothed vessel estimates. Left: O = 0 °, rialit: B = 90 °.
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Figure 4: Projections of vessel primitive estimates Sv after smoothing. Left: 0 = 0°, right: 9 — 90°.

Figure 5: Difference between original angiograms and smoothed vessel estimates. Left: 0 = 0°, right: 0 = 90°
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Figure 6: Outline of reprojection of estimated vessel and aneurysm (black) superimposed on true objects (shaded).
Left: O = 0 °, right: O = 90 °.
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Figure 7: True (solid) vs. estimated (dashed) aneurysm cross sections, z = 106, ... , 103.
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Figure 8: True (solid) vs. estimated (dashed) stenosis cross sections, z = 50, ... , 70.
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Figure 6: Outline of reprojection of estimated vessel and aneurysm (black) superimposed on true objects (shaded). 
Left: 0 = 0°, right: 0 = 90°.
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Figure 7: True (solid) vs. estimated (dashed) aneurysm cross sections, z = 106,...,103.
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Figure 8: True (solid) vs. estimated (dashed) stenosis cross sections, z = 50,.. .,70.

SPiE Vol. 1092 Medical imaging ill: Image Processing (1989) / 31

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Jul 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



*References

[1] K. Shmueli, W. Brody, and A. Macovski, "Estimation of blood vessel boundaries in X -ray images," Optical
Engineering, vol. 22, pp. 110 -116, Jan. 1983.

[2] D. Rossi and A. Willski, "Reconstruction from projections based on detection and estimation of objects -parts
I & II: performance analysis and robustness analysis," IEEE Transactions on Acoustics Speech and Signal
Processing, vol. 32, pp. 886 -906, Aug. 1984.

[3] Y. Bresler and A. Macovski, "Three- dimensional reconstruction from projections with incomplete and noisy
data by object estimation," IEEE Transactions on Acoustics Speech and Signal Processing, vol. 35, pp. 1139-
1152, Aug. 1987.

[4] T. Pappas and J. Lim, "A new method for estimation of coronary artery dimensions in angiograms," IEEE
Transactions on Acoustics Speech and Signal Processing, vol. 36, pp. 1501 -1513, Sep. 1988.

[5] K. Kitamura, J. Tobis, and J. Sklansky, "Estimating the 3 -D skeletons and transverse areas of coronary arteries
from biplane angiograms," IEEE Transactions on Medical Imaging, vol. 7, pp. 173 -187, Sep. 1988.

[6] Y. Bresler, J. Fessier, and A. Macovski, "Model based estimation techniques for 3 -D reconstruction from
projections," Machine Vision and Applications, vol. 1, pp. 115 -126, 1988.

[7] Y. Bresler, J. Fessier, and A. Macovski, "A Bayesian approach to reconstruction from incomplete projections
of a multiple object 3 -D domain," IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989. To
appear.

[8] Y. Bresler, Model Based Estimation Techniques for 3 -D Reconstruction from Projections. PhD thesis, Stanford
University, Stanford, CA., Dec. 1985.

[9] G. Agin and T. Binford, "Computer description of curved objects," IEEE Transactions on Computers, vol. C-
25, pp. 439 -449, Apr. 1976.

[10] J. Fessier and A. Macovski, "3 -D reconstruction of vessel trees from a few projections - a phantom study,"
1989. submitted to IEEE Conf. on Computer Vision and Pattern Recognition.

[11] B. Silverman, "Some aspects of the spline smoothing approach to non -parametric regression curve fitting,"
Journal of the Royal Statistical Society Series B, vol. 47, pp. 1 -52, 1985.

[12] M. Bertero, T. Poggio, and V. Torre, "Visual shape computation," Proceeding of the IEEE, vol. 76, pp. 869 -899,
Aug. 1988.

[13] C. H. Reinsch, "Smoothing by spline functions," Numerische Mathematic, vol. 10, pp. 177 -183, 1967.

[14] R. L. Eubank, Spline Smoothing and Nonparametric Regression. N. Y.: Marcel Dekker, 1988.

[15] J. Fessier and A. Macovski, "Non- parametric fixed -interval smoothing with cubic splines," 1989. Submitted
to IEEE Trans. on Acoustics, Speech, and Signal Proc.

32 / SPIE Vol. 1092 Medical Imaging Ill: Image Processing (1989)

* References

[I] K. Shmueli, W. Brody, and A. Macovski, "Estimation of blood vessel boundaries in X-ray images," Optical 
Engineering, vol. 22, pp. 110-116, Jan. 1983.

[2] D. Rossi and A. Willski, "Reconstruction from projections based on detection and estimation of objects-parts 
I &; II: performance analysis and robustness analysis," IEEE Transactions on Acoustics Speech and Signal 
Processing, vol. 32, pp. 886-906, Aug. 1984.

[3] Y. Bresler and A. Macovski, "Three-dimensional reconstruction from projections with incomplete and noisy 
data by object estimation," IEEE Transactions on Acoustics Speech and Signal Processing, vol. 35, pp. 1139- 
1152, Aug. 1987.

[4] T. Pappas and J. Lim, "A new method for estimation of coronary artery dimensions in angiograms," IEEE 
Transactions on Acoustics Speech and Signal Processing, vol. 36, pp. 1501-1513, Sep. 1988.

[5] K. Kitamura, J. Tobis, and J. Sklansky, "Estimating the 3-D skeletons and transverse areas of coronary arteries 
from biplane angiograms," IEEE Transactions on Medical Imaging, vol. 7, pp. 173-187, Sep. 1988.

[6] Y. Bresler, J. Fessler, and A. Macovski, "Model based estimation techniques for 3-D reconstruction from 
projections," Machine Vision and Applications, vol. 1, pp. 115-126, 1988.

[7] Y. Bresler, J. Fessler, and A. Macovski, "A Bayesian approach to reconstruction from incomplete projections 
of a multiple object 3-D domain," IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989. To 
appear.

[8] Y. Bresler, Model Based Estimation Techniques for 3-D Reconstruction from Projections. PhD thesis, Stanford 
University, Stanford, CA., Dec. 1985.

[9] G. Agin and T. Binford, "Computer description of curved objects," IEEE Transactions on Computers, vol. C- 
25, pp. 439-449, Apr. 1976.

[10] J. Fessler and A. Macovski, "3-D reconstruction of vessel trees from a few projections - a phantom study," 
1989. submitted to IEEE Conf. on Computer Vision and Pattern Recognition.

[II] B. Silverman, "Some aspects of the spline smoothing approach to non-parametric regression curve fitting," 
Journal of the Royal Statistical Society Series B, vol. 47, pp. 1-52, 1985.

[12] M. Bertero, T. Poggio, and V. Torre, "Visual shape computation," Proceeding of the IEEE, vol. 76, pp. 869-899, 
Aug. 1988.

[13] C. H. Reinsch, "Smoothing by spline functions," Numerische Mathematic, vol. 10, pp. 177-183, 1967. 

[14] R. L. Eubank, Spline Smoothing and Nonparametric Regression. N. Y.: Marcel Dekker, 1988.

[15] J. Fessler and A. Macovski, "Non-parametric fixed-interval smoothing with cubic splines," 1989. Submitted 
to IEEE Trans. on Acoustics, Speech, and Signal Proc.

32 / SPIE Vol. 1092 Medical Imaging III: Image Processing (1989)

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 19 Jul 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


