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Abstract—SPECT image reconstruction is challenging due
to the poor spatial resolution of the SPECT camera.
Incorporating machine learning (ML) based regularizers
into reconstruction algorithms is receiving more attention
recently. However, most previous works assume the true
images used for training have the same voxel size as
the reconstructed images, which can be suboptimal when
training images with finer voxel sizes are available. Directly
using ML-based algorithms with fine voxel sizes could be
very computationally expensive due to the heavy computa-
tions involved in forward and backward projections. This
paper proposes a novel, efficient image super-resolution
reconstruction network (ESR-Net) that can improve the
resolution by training the ML based regularizer using true
activity maps having finer voxel sizes, while maintaining
the computational efficiency by computing the forward
and backward projections in coarser voxel sizes through
downsampling and upsampling. Simulation results based
on digital XCAT phantoms demonstrated that the proposed
ESR-Net significantly outperformed other methods (OSEM
and BCD-Net), when evaluated qualitatively by visualizing
reconstructed images and line profiles, as well as quantita-
tively by mean recovery coefficients (MRC) and normalized
root mean square error (NRMSE).

Index Terms—Regularized model-based image reconstruc-
tion, image super-resolution, unrolled iterative algorithm,
deep learning, Lu-177 SPECT.

I. INTRODUCTION

SPECT is a nuclear medicine technique that images
spatial distributions of radioisotopes for clinical

diagnosis and to estimate radiation absorbed doses in
nuclear medicine therapies. The SPECT reconstruction
problem is challenging because of the limited spatial
resolution of the collimator.

Traditional SPECT reconstruction methods, e.g., ordered
subset expectation maximization (OSEM), suffer from
a trade-off between recovery and noise. Regularizers
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may address that trade-off, but choosing an appropriate
regularizer can be challenging. Conventional regularizers
such as total variation (TV) and non-local means (NLM)
rely on assumed image properties that may not hold
in practice. Recently, regularizers learned from deep
neural networks (DNN) have received much attention.
Chun et al. [1] proposed to use matched encoders
and decoders (known as BCD-Net) to learn regularizers
for low-dose CT reconstruction; Lim et al. [2] refined
the structure of BCD-Net and applied it to low-count
PET reconstruction. Other methods such as FBSEM-
Net [3], EM-Net [4], MAPEM-Net [5], have also been
proposed recently. Even if originally proposed for CT
or PET, these algorithms are applicable for SPECT
reconstruction by using an appropriate system model [6].
However, one limitation of these previous methods is that
they assume the true images used for training have the
same voxel size as the reconstructed images, which can
be suboptimal if true images having finer voxel sizes
(or higher resolution) are available. Directly applying
the algorithms mentioned above to images with fine
voxel sizes is conceptually straightforward, but would
be very computationally expensive due to the heavy
computations in forward and backward projections.

This paper proposes a novel, efficient method that can
enhance the resolution of the reconstruction by training
the regularizer using training images having finer voxel
sizes, while maintaining the computational efficiency
by working with coarser voxels for forward and back-
ward projections. We use downsampling and upsampling
operators to handle the different voxel sizes. We call
the proposed Efficient Super-Resolution network “ESR-
Net”.

The rest of this paper is organized as follows: Section II
introduces the proposed ESR-Net, digital phantom simu-
lation and evaluation metrics. Section III provides simu-
lation results and compares with previous methods both
qualitatively and quantitatively. Section IV concludes
this paper and provides future directions.
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II. METHODS

A. ESR-Net

In regularized model-based SPECT reconstruction of an
image x, we aim to solve

x̂ = argmin
x≥0

f(x) + βR(x),

f(x) ≜ 1′ (Ax+ r̄)− y′ log(Ax+ r̄), (1)

where A denotes the SPECT system model, y denotes
noisy measurements that are assumed to follow i.i.d.
Poisson distribution. r̄ denotes the mean background
events such as scatters; f(x) is the negative Poisson
maximum likelihood (ML) function, R(x) is the regular-
ization function. This paper focuses on machine learning
based R(x).

The key idea of ESR-Net is to let f(x) work with coarse
voxel sizes whereas R(x) works with finer voxels. So
we modify the cost function (1) to be

x̂ = argmin
x≥0

f(Tx) + βR(x), (2)

where T denotes a 3D downsampling matrix, and x
denotes a finely sampled image. Our implementation of
the downsampling Tx uses average pooling.

To attack (2), one can use unfolded block coordinate
descent (BCD) algorithm [2], which leads to the iteration
update of the form

uk+1 = rθ(xk), (3)

xk+1 = argmin
x≥0

f(Tx) +
β

2
∥x− uk+1∥22

≈ 1
2β

(√
h2(uk+1) + 4βxk ⊙ e(xk)− h(uk+1)

)
,

where rθ denotes a neural network with parameter θ;
(·)2 and ⊙ denotes element-wise square and multipli-
cation, respectively. Subscript k denotes the iteration
number, and functions h(·) and e(·) are

h(uk+1) ≜ T ′A′1− βuk+1,

e(xk) ≜ T ′A′ (y � (ATxk + r̄)) , (4)

where T ′ denotes the adjoint of the down-sampling
operator T , which is an up-sampling operation. We
implemented this as an exact adjoint. In (3), we ran
one iteration of regularized EM algorithm to approximate
the minimizer per each outer iteration. Fig. 1 shows the
proposed ESR-Net architecture.

B. Digital Phantom Simulation

We simulated 4 XCAT phantoms (of size 384×384×240,
voxel size 1.6×1.6×1.6 mm3) [7] as the true activity
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Fig. 1. Architecture of the proposed ESR-Net for SPECT reconstruc-
tion.

map in our experiment, which covered a diverse range
with regard to lesions of different sizes and locations
(within and outside the liver). Lesions with non-uniform
activity distribution, such as necrotic (cold) sub regions
(Fig. 2 (a)) were also included. Out of the 4 XCAT
phantoms, we randomly selected two for training, one for
validation and one for testing. To be clinically relevant,
we assigned the activity distribution of XCAT phantoms
to approximately follow the activity distribution of pa-
tients imaged with SPECT for the purposes of dosimetry
following Lu-177 DOTATATE therapy. Table I shows the
activity ratio using liver as reference (the activity of liver
is normalized to 1) of XCAT phantoms.

TABLE I
ACTIVITY CONCENTRATION RATIO (COMPARED TO LIVER) OF

XCAT PHANTOMS.

Phantom/Organ Lesion Kidney cortex/medulla Spleen Lung
Train 1 10 2/1 1.5 0.1
Train 2 6.2 3.0/3.0 3.7 0.08

Val 3 1/0.25 1.5 0.1
Test 7 1/0.25 1.5 0.1

Next, Lu-177 SPECT projections corresponding to each
XCAT phantom’s activity/density maps were generated
using the SIMIND MC code [8] simulating approxi-
mately 1 billion histories per projection. The SIMIND
model parameters were based on Lu-177 patient imag-
ing in our clinic (Siemens Intevo with medium energy
collimators, a 5/8” crystal, a 20% photopeak window
at 208 keV, and two adjacent 10% scatter windows).
Poisson noise was simulated after the 128 projection
views were scaled to a count-level in the range of 3–20
million total counts, corresponding to the range in post-
therapy imaging. SPECT reconstruction used an OSEM
algorithm in the Michigan Image Reconstruction Tool-
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box (MIRT)1 with CT-based attenuation correction, triple
energy window (TEW) scatter correction and collimator-
detector response modeling (4 subsets and 16 iterations,
128×128×80 matrix with voxel size 4.8×4.8×4.8 mm3,
no Gaussian smoothing).

Since all activity maps must have the same units to be
fairly compared, we scaled the true activity map by

xscaled
true ≜

xtrue∑
xtrue

· CF · IF · CLF, (5)

where CF = 15.65 is the SIMIND calibration factor
using a point source; IF stands for “interpolation factor”,
which equals to 4.8mm3/1.6mm3=27; CLF stands for
“count level factor”, which is the ratio between the scaled
count level before adding Poisson noise and the total
counts from SIMIND.

C. Neural Network

We performed sequential training, i.e., training every
outer iteration of the BCD algorithm sequentially with
non-shared weights DNNs, for the consideration of
memory efficiency. Each DNN is a 3D U-Net [9] with
3 downsample-upsample pairs and 8 filters in the first
convolutional layer. After each downsample layer, the
number of filters at the next convolutional layer was
increased by a factor of two. To potentially simplify
the DNN training, we added the DNN input (i.e., xk)
to the DNN output, as in the common residual learning
approach [10]. We removed all the batch normalization
layers in the DNN since we set the batch size to be one.
Each DNN was trained for 500 epochs on a Nvidia RTX
3090 GPU by minimizing the mean square error (MSE)
using AdamW optimizer [11] with learning rate 0.002.
We implemented the DNN in PyTorch.

D. Evaluation Metric

We used mean recovery coefficient (MRC) and normal-
ized root mean square error (NRMSE) as evaluation
metrics, where MRC is

MRC ≜
1
np

∑
j∈VOI x̂[j]

1
np

∑
j∈VOI x

scaled
true [j]

× 100%, (6)

where np denotes number of voxels in the voxels of
interest (VOI). NRMSE is defined as

NRMSE ≜

√
1
np

∑
j∈VOI

(
x̂[j]− xscaled

true [j]
)2

√
1
np

(
xscaled

true [j]
)2 × 100%.

(7)

1Available at https://web.eecs.umich.edu/∼fessler/code/index.html.

E. Compared Methods

We compared our proposed ESR-Net with the conven-
tional unregularized OSEM algorithm and BCD-Net [2].
Both OSEM and BCD-Net work with 4.8mm3 voxel
sizes, whereas ESR-Net works with 1.6mm3 voxels, so
we resized the reconstructed images of OSEM and BCD-
Net into 1.6mm3 voxel size using trilinear interpolation
before comparison. We trained BCD-Net and ESR-Net
with the same regularization parameter β = 0.1 and
the same DNN architecture; the only difference is that
the BCD-Net was trained using activity maps of size
128×128×80 (GT 128 in Fig. 2), which were down-
sampled from the original true activity maps. We used
validation data to empirically choose the number of outer
iterations as 4. The regularized EM algorithm for BCD-
Net and ESR-Net was implemented in Julia using the
“SPECTrecon” package2 [6].

III. RESULT

A. Qualitative Comparison

Fig. 2 shows that the proposed ESR-Net visually im-
proves the reconstruction of a necrotic tumor over the
OSEM and the BCD-Net significantly. In particular, the
OSEM and BCD-Net barely recovered the cold center;
in contrast, the proposed ESR-Net showed much better
recovery and was even comparable with the GT 128
regarding the line profile as demonstrated in Fig. 2 (f).
Furthermore, Fig. 2 also demonstrates improvement in
resolution for spleen.

B. Quantitative Comparison

Table II and Table III show that the proposed ESR-Net
consistently has the highest MRC over all lesions and
the lowest NRMSE over all test organs, compared to
OSEM and BCD-Net. The improvement by the ESR-Net
for NRMSE can up to 10% (for spleen). On the other
hand, the BCD-Net showed comparable performance as
the OSEM, which could be due to the suboptimality of
the ground truth used in training.

TABLE II
MRC OF LESIONS. ∗ : LESION 1 HAS A 19 ML NECROTIC CENTER.

Lesion/MRC(%) Vol (mL) OSEM BCD-Net ESR-Net
Lesion 1∗ 67.5 69.6 68.4 75.9
Lesion 2 10.1 92.7 89.4 97.1
Lesion 3 9.1 93.2 89.9 98.1

2Available at https://github.com/JuliaImageRecon/SPECTrecon.jl.
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Fig. 2. Qualitative comparison of different methods on test XCAT phantom, where † denotes after interpolation (image size
128×128×80→384×384×240 with voxel size 4.8mm3 →1.6mm3). Subfigure (f) shows the line profile over a necrotic tumor marked by
the dashed line in (a).

TABLE III
NRMSE OF DIFFERENT ORGANS. “LESION∗” DENOTES

AVERAGING ACROSS ALL LESIONS.

Organ/NRMSE(%) OSEM BCD-Net ESR-Net
Lesion∗ 37.4 36.1 31.4
Kidney 53.8 53.2 47.3
Liver 47.7 46.9 41.7

Spleen 42.2 41.3 31.8
Lung 53.3 53.4 44.6

We also compared the NRMSE vs. iterations between
different algorithms. We first tested the NRMSE of ESR-
Net on the validation data. The NRMSE curve (Fig. 3)
went down initially and up after 4 iterations, implying
that DNN might start overfitting to the training data after
4 iterations. Based on the validation results, we ran 4
iterations for all methods. Fig. 3 also demonstrates that
the proposed ESR-Net consistently outperformed OSEM
and BCD-Net at any iteration; whereas the BCD-Net was
comparable to the unregularized OSEM.

C. Run Time Comparison

Table IV compares the run time of a single forward
projection operation (ran in Julia with “SPECTrecon”
package using 8 threads of an Intel Core i9-10920X
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44
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Fig. 3. NRMSE vs. iteration between different algorithms. “Valida-
tion” denotes the NRMSE of “ESR-Net” tested on the validation data.

CPU @ 3.50 GHz) for different image sizes. Table IV
demonstrates that directly applying algorithms such as
BCD-Net to larger image size (finer voxel size) required
much more compute time and hence can be impractical.
This motivates the idea of ESR-Net that uses finer voxel
sizes only in DNN regularization because efficient im-
plementations of matrix multiplications are available on
GPU; while working with coarser voxel size in forward
and backward projections to save compute time.
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TABLE IV
RUN TIME FOR A SINGLE FORWARD PROJECTION, WHERE “1X”

DENOTES 128×128×80; “2X” AND “3X” DENOTE THE IMAGE SIZE
INCREASED BY A FACTOR OF 2 AND 3 AT EACH DIMENSION,

RESPECTIVELY.

Image size 1x 2x 3x
Run time (s) 4.6 50.6 189.4

IV. DISCUSSION AND CONCLUSION

This paper proposed a novel, efficient image super-
resolution network (ESR-Net) for SPECT reconstruction.
The proposed ESR-Net is trained with finer voxel size
ground truth (GT) but maintains computational efficiency
by incorporating downsampling and upsampling during
forward and backward projections. Simulation results
based on digital XCAT phantoms showed that the pro-
posed ESR-Net outperformed the OSEM and BCD-Net
both qualitatively and quantitatively.

We also tested the ESR-Net on virtual patient phantoms
and we found ESR-Net shows limited improvement com-
pared to the BCD-Net. This is attributed to the resolution
of true activity maps. For virtual patient phantoms,
the true activity maps were defined from reconstructed
patient images that were degraded by the camera res-
olution effects and hence limited the performance of
ESR-Net. To address this issue, we plan to investigate
3D image deblurring algorithms for patient images to
provide better training data in the future [12]. Future
work also includes training and testing on an expanded
dataset including patients, and generalizing ESR-Net for
other radionuclides such as Y-90.
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