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Abstract—Despite continuing research into inter-GPU com-
munication mechanisms, extracting performance from multi-
GPU systems remains a significant challenge. Inter-GPU com-
munication via bulk DMA-based transfers exposes data transfer
latency on the GPU’s critical execution path because these
large transfers are logically interleaved between compute kernels.
Conversely, fine-grained peer-to-peer memory accesses during
kernel execution lead to memory stalls that can exceed the
GPUs’ ability to cover these operations via multi-threading.
Worse yet, these sub-cacheline transfers are highly inefficient
on current inter-GPU interconnects. To remedy these issues, we
propose PROACT, a system enabling remote memory transfers
with the programmability and pipeline advantages of peer-to-
peer stores, while achieving interconnect efficiency that rivals
bulk DMA transfers. Combining compile-time instrumentation
with fine-grain tracking of data block readiness within each
GPU, PROACT enables interconnect-friendly data transfers
while hiding the transfer latency via pipelining during kernel
execution. This work describes both hardware and software
implementations of PROACT and demonstrates the effectiveness
of a PROACT software prototype on three generations of GPU
hardware and interconnects. Achieving near-ideal interconnect
efficiency, PROACT realizes a mean speedup of 3.0× over single-
GPU performance for 4-GPU systems, capturing 83% of available
performance opportunity. On a 16-GPU NVIDIA DGX-2 system,
we demonstrate an 11.0× average strong-scaling speedup over
single-GPU performance, 5.3× better than a bulk DMA-based
approach.

Index Terms—GPGPU, multi-GPU, strong scaling, GPU mem-
ory management, data movement, heterogeneous systems

I. INTRODUCTION

Despite advancements in GPU architecture and program-
ming models, achieving peak performance on multi-GPU
systems remains a challenge for GPU programmers [1]–[6]. To
efficiently parallelize applications across a multi-GPU system,
developers typically distribute an application’s data structures
across each GPU’s physical memory. Programs are also de-
signed to operate in logical phases, alternating between periods
of heavy computation accessing mostly locally-available data
and periods of data distribution and synchronization among the
GPUs. Unfortunately, this typically results in inefficient use of
resources: interconnects sit idle during computation phases,
and compute units sit idle during communication phases.

To obtain high interconnect utilization and maximize per-
formance on multi-GPU systems, developers are forced to
dedicate substantial manual effort to performance-tuning and
re-architecting their applications to ensure optimal data distri-
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bution, inter-GPU communication, and synchronization man-
agement. These steps often require detailed knowledge of in-
ternal GPU architecture, GPU interconnects, and the memory
access patterns of applications. As a result, peak multi-GPU
performance is often only achievable by “ninja” programmers.

One major impediment to improving multi-GPU perfor-
mance is the difficulty in efficiently overlapping GPU compu-
tation with communication phases, leading to system resource
under-utilization. Historically, multi-GPU applications have
used bulk DMA-based communication among GPUs because
these DMA transfers provide high interconnect utilization
during the transfer phases. Unfortunately, due to bulk syn-
chronization, GPU computation cannot generally take place
during these communication phases. Figure 1(a) depicts a
typical DMA-based transfer between two GPUs. The DMA
transfer occurs between the producer and consumer kernels
on the GPUs, exposing the data transfer latency.

More recently, fine-grained peer-to-peer (P2P) transfers en-
able GPU compute units to issue loads and stores directly
to the physical memory of remote GPUs. These peer-to-
peer (P2P) transfers enable inherent overlap of compute and
communication, but P2P transfers are inefficient on current
GPU interconnects, leading to gross under-utilization of the

139

2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA)

978-1-6654-3333-4/21/$31.00 ©2021 IEEE
DOI 10.1109/ISCA52012.2021.00020



inter-GPU interconnect. As depicted in Figure 1(b), P2P loads
often result in the consumer kernel stalling while waiting
for remote loads to complete, due to interconnect latency,
negatively impacting performance. As shown in Figure 1(c),
P2P stores between GPUs are often generated at sub-cacheline
granularity with sporadic access patterns. Although some store
latency is hidden, due to protocol packetization overheads,
these stores do not use the GPU-interconnect efficiently.

This work proposes PROACT, a joint compile-time and
runtime system that combines the flexibility of peer-to-peer
stores with the interconnect efficiency of bulk transfers, as
shown in Figure 1(d). PROACT exposes an easy-to-use P2P-
store programming model to developers but leverages profiling
and GPU-runtime support to track data generation, perform
transfer coalescing, and dynamically issue transfers over the
interconnect to achieve high utilization. PROACT provides
efficient overlap of per-GPU computation and inter-GPU data
transfer by performing the transfers proactively soon after data
generation and can be supported with either dedicated hard-
ware or software (at the expense of some GPU computation
resources).

To evaluate the PROACT approach of balancing fine-grained
transfers with intelligent interconnect utilization, we provide
a comprehensive performance comparison to other common
multi-GPU programming paradigms that use automatic GPU
memory management, barrier-based GPU transfers, and fine-
grained data accesses. To demonstrate the performance of
PROACT, we implement a software prototype of our design
on real hardware. We show that even while consuming GPU
resources (an overhead which would be eliminated with future
hardware support), PROACT is the best performing approach
to multi-GPU programming, enabling strong scaling to an
11.0× mean performance improvement on a prototype 16-
GPU system—5.3× better than the next-best alternative, a
standard bulk-synchronous approach.

II. BACKGROUND

A. CUDA Programming Model

CUDA [7] extends C++ by allowing the programmer to
define functions, called kernels, that when called, are executed
in parallel by many thousands of threads grouped into blocks.
Sets of threads (32 in recent GPUs) within a block are grouped
into warps, scheduled by hardware and executed in lock-
step on a Streaming Multiprocessor (SM). GPU programming
involves launching kernels with pre-configured thread counts
and block dimensions on the GPU(s).

To parallelize an application across GPUs, kernels are
launched on each GPU separately, with the execution spread
across multiple GPUs, and the data structures localized on one
GPU or replicated or partitioned across multiple GPUs. The
GPU count can scale along with both the compute and memory
bandwidth available to the application. Though application
developers would prefer the work performed by each GPU
to be fully independent, in practice, many/most algorithms
inherently require some amount of communication among
threads. In such applications, the relative portion of time
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spent on inter-GPU communication generally increases along
with GPU count, and communication eventually becomes the
performance bottleneck for strong scaling.

B. Inter-GPU Communication Mechanisms

Regardless of the amount of remote data a multi-GPU
program may access during its execution, GPU programmers
must choose among several mechanisms to perform these
accesses, and each mechanism has unique performance char-
acteristics described below. We describe these mechanisms and
their performance implications using NVIDIA’s terminology to
provide specific examples, though the concepts themselves are
general. Pedagogically, we refer to a kernel that requires data
produced by another GPU as a consumer kernel and the kernel
that generates data for kernels on other GPU(s) as a producer
kernel. In practice, a single kernel is often both the producer
of some data and a consumer of other data simultaneously.

DMA-based bulk transfers: When using bulk DMA-based
transfers between GPUs, data transfer is typically explicitly
invoked from the host program executing on the CPU via
cudaMemcpy(). The transfer is scheduled following the
completion of the producer kernel, and before the invocation
of the consumer kernel. The cudaMemcpy() call invokes
the GPU’s hardware DMA engine to transfer data directly
between the GPUs’ memories without the need for the transfer
to reflect off of the CPU’s memory system. This paradigm
can saturate most GPU interconnects when transferring very
large granularity data and ensures that subsequent accesses
made by the consumer will be serviced at high bandwidth
from within the consumer GPU’s local physical memory.
However, this method is not suitable for small (several cache
lines) or medium (several KB) sized transfers due to the high
initialization and synchronization overhead of returning to the
host program and then programming the DMA engine. Each
of these steps can consume several microseconds [8], which
dominates the data transfer time itself. Though programmers
can attempt to interleave computation and communication
using DMA-based transfers, it requires substantial programmer
expertise and effort.

Peer-to-peer (P2P) GPU accesses: In modern multi-GPU
systems, individual GPUs are capable of directly reading and
writing the physical memory of peer GPUs without GPU
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runtime intervention or host CPU synchronization. The advan-
tages of performing direct remote accesses using GPU threads
is that there is no initiation overhead (such as programming
a DMA engine) and the accesses can be performed while
unrelated computation continues in parallel, within a given
thread and without stalling other threads. However, when loads
are performed from remote memory, these P2P loads often
stall thread execution beyond the GPUs’ ability to hide the
load latency with multi-threading due to the longer latency of
the inter-GPU interconnect as compared to local memory. As
these load stalls build up within the GPU’s memory system,
they eventually consume precious GPU resources that would
otherwise have been used to make the execution progress.

Unlike P2P reads that eventually may stall each issuing
thread in the GPU, P2P writes almost never stall the issuing
thread because there is no implicit dependence within program
execution. As such, they consume substantially fewer on-chip
resources. We believe the non-blocking nature of P2P stores
makes them fundamentally the most efficient way to perform
multi-GPU communication. P2P stores are not a panacea,
however. Straightforward use of P2P stores will typically result
in numerous small writes (as small as one byte) issued over
the inter-GPU interconnect, which results in poor interconnect
utilization. PROACT adopts P2P stores as the basis of its
programming model, and the major contribution of this work
is designing a system that can overcome poor interconnect
efficiency when performing small P2P writes.

Programmatic communication libraries: To ease the de-
velopment burden, it is common for GPU programmers to use
GPU-aware libraries such as MPI [9], NVIDIA’s NCCL [10],
or NVIDIA’s NVSHMEM [11] to provide universal inter-GPU
communication and synchronization patterns, irrespective of
the interconnect technology and topologies on which the
code runs. In turn, these libraries may selectively use bulk
DMA transfers or P2P accesses under the hood, combined
with the library-controlled memory management to optimize
communication between GPUs.

Although these libraries continue to be optimized, there is
little they can do to avoid DMA initiation overhead when
performing large transfers. None of these libraries attempt
to aggregate fine-grained transfers intelligently to improve
interconnect efficiency to the best of our knowledge. We
will show that brief compile-time profiling of a system and

runtime optimization for interconnect utilization can provide
a substantial performance improvement over the underlying
mechanisms used by these libraries. Without loss of generality,
the PROACT technique could be implemented as a new back
end to many of these commonly used libraries. Section VI
discusses several additional GPU communication libraries.

C. Inter-GPU Interconnect Efficiency

System architects and builders have a range of interconnect
technology choices while designing multi-GPU systems. For
over a decade and still today, PCIe [12] has been the dominant
interconnect used to attach peripherals and accelerators to
CPUs, and to each other. More recently, NVLink [13] was
designed by NVIDIA as a dedicated GPU interconnect that
targeted higher bandwidth and improved scalability over PCIe.
Other high-performance interconnects such as Infiniband [9]
and AMD’s Infinity Fabric [14] exist and target large-scale
networking, CPU-CPU, and CPU-GPU connections.

Despite both evolutionary (PCIe) and clean slate (NVLink)
design progression where both protocols support direct peer-
to-peer accesses between GPUs, both PCIe and NVLink have
poor efficiency when performing small accesses. Figure 2
shows the percentage of goodput achieved on the interconnect,
i.e., the percentage of useful data delivered over PCIe and
NVLink interconnects for varying store granularities. Both
interconnect technologies provide high efficiency for transfers
with greater than 128 bytes (a common cacheline size) but
drop off dramatically at smaller transfer sizes. Interconnect
efficiency decreases at these smaller granularities because pro-
tocol packetization overheads dominate the effective goodput,
and the transfer efficiency falls as low as 8% on NVLink and
14% on PCIe for 4-byte stores. Therefore, while P2P writes
may fundamentally be the most efficient way to transfer data
from a latency-hiding perspective, dramatic improvements in
interconnect efficiency must be achieved to improve overall
multi-GPU performance.

III. PROACT DESIGN AND IMPLEMENTATION

PROACT attempts to bridge the benefits of DMA-based
bulk copies and peer-to-peer accesses in multi-GPU systems to
provide the interconnect efficiency of large transfers with the
non-blocking semantics of SM initiated peer-to-peer stores.
PROACT improves the performance of multi-GPU systems
by (1) balancing the overlap of data transfers with GPU
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computation, (2) maximizing the opportunity for write coa-
lescing, (3) smoothing interconnect utilization over time to
ensure no bandwidth is wasted, and (4) increasing interconnect
efficiency by ensuring communication occurs at sufficiently
large granularities.

To provide these benefits for a range of applications with
varying data access patterns, PROACT needs to make the
following design choices depending on the application and
system architecture.

• Transfer mechanism: GPUs provide different ways to
transfer data among memories. The best approach over-
laps compute with communication while providing high
interconnect utilization and efficiency.

• Transfer granularity: Data transfer mechanisms vary
in efficiency as a function of granularity. Performing
transfers in coarser chunks can reduce initiation overhead
but may result in a large tail chunk that extends past
the end of the computation, delaying the next phase. On
the other hand, transferring data as fine-grained chunks
can lead to poor interconnect efficiency, as described in
Section II-C.

• Transfer resources: Performing data transfers by em-
ploying all threads in the system typically leads to inter-
connect inefficiencies and compute stalls, but developing
applications that use per-thread warp specialization so
that only a subset of the threads are writing data to
remote GPUs is both difficult to implement and error-
prone. Thus, PROACT needs to automatically identify
the appropriate amount of GPU resources to perform the
transfers and hide this complexity from programmers as
much as possible.

• Tracking data generation: When data transfer is per-
formed by a different thread or engine than the thread that
produced the data, PROACT must develop an appropriate
mechanism to track data production and synchronize the
producer with the transfer mechanism.

PROACT has three primary components that coordinate up
and down the software and hardware stack to make these
design choices and maximize throughput. Figure 3 provides
an overview of these building blocks. They are (a) a compile-
time profiler to determine the different PROACT parameters
required to achieve optimized transfer efficiency, (b) a tracking
unit to monitor data readiness, and (c) a data transfer mech-
anism that initiates optimized transfers. Each component is
described in further detail below.

A. Optimizing Transfer Efficiency via Profiling

The first step in improving interconnect efficiency is iden-
tifying how to extract performance from the multi-GPU in-
terconnect without hampering GPU compute throughput. If
the granularity of P2P stores is too small, they offer poor
interconnect efficiency, as described earlier in Section II-C. If a
sufficient number of writes are not in flight on the interconnect
at any given time, bandwidth will go underutilized.

Perhaps unsurprisingly, performance is a complicated func-
tion of multiple parameters. Figure 4 provides an example
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of the sensitivity to the number of transfer threads (see Sec-
tion III-C) and aggregate transfer granularity on an NVIDIA
Kepler-based system based on a microbenchmark study de-
scribed in Section IV-C. The performance trends for this
study are explored in greater detail in Section V-A. In this
case, the best application throughput is obtained for transfer
granularities between 64kB and 1MB when the number of
threads used for the transfers is more than 128. For this study,
we observed that 128 threads are sufficient to saturate the
interconnect bandwidth, and including more threads resulted
in no improvement in interconnect utilization. Each GPU
generation and interconnect type has a specific number of
GPU threads needed to saturate the interconnect bandwidth.
By examining these profiles, PROACT can choose the number
of transfer threads for a given system to maximize interconnect
bandwidth while minimizing how many GPU execution lanes
are used for data transfer.

To facilitate exploration of the complex design space, as
shown in Figure 3(a), PROACT contains a compile-time
software profiling suite that identifies the appropriate balance
of the many competing factors that affect performance on a
given GPU and interconnect. The PROACT profiler performs a
parameter sweep and analyzes application performance across
PROACT’s different transfer mechanisms (described later in
Section III-C), and varying the transfer chunk size and transfer
thread count, to identify the configuration that achieves the
best application runtime for a given application and system. It
then configures the application compilation to emit code that
is most efficient according to the profiling results.

We found that a brute-force search across the configuration
space (explained in the following sections) was feasible and
sufficient for the PROACT profiling pass. The best PROACT
configuration depends on the GPU architecture, interconnect
architecture, and compute and interconnect bandwidth require-
ments of the application, thus requiring the profiling on a per-
application basis.
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B. Tracking Local Data Transfer Readiness

PROACT presents users with a programming model that
encourages the use of P2P stores; however, transmitting data
over the interconnect at fine granularity leads to poor inter-
connect efficiency. We propose that remote GPU transfers
be decoupled from each thread’s writes by aggregating these
writes into local GPU memory before being transferred to
remote GPUs. As shown in Figure 5, PROACT provides a
staging mechanism whereby GPU threads individually write
to local memory indicated by the programmer as a PROACT-
enabled region. This locally written data is then propagated to
remote GPUs by an asynchronously operating transfer agent.
By decoupling the transfer of data over the interconnect from
the generation of data locally, PROACT can optimize the
transfer timing, granularity, and mechanisms it chooses to
employ (based on profiling). Note that PROACT does not
allocate and deploy explicit data transfer buffers, thus avoiding
extra copy operations. Once a memory region is PROACT-
enabled, a 1:1 correspondence is maintained between local
and remote memory locations for that region. In other words,
all the local writes to a PROACT-enabled region are sent to
the remote GPUs.

The NVIDIA GPU memory model only requires weak
writes and strong writes with cta and gpu scopes to be
visible at remote GPUs no later than the succeeding global
synchronization barrier. PROACT exploits this slack by ag-
gregating data in local memory until all writes to a transfer
chunk complete, only then pushing out data to keep the
interconnect saturated with high-efficiency transfers. Strong
writes with sys-scope are typically used as global memory
synchronization instructions rather than for performing data
transfers and hence do not fall under the purview of PROACT.

Atomic counters to track data generation: The existence
of a decoupled transfer mechanism implies a need to track
when a transfer is ready to begin. PROACT employs a set
of atomic counters (one per chunk within the determined
transfer granularity) to track data generation and begin the
transfers. While ultra-fast hardware support for tracking data
readiness may be beneficial, it is unnecessary because GPUs
today already support atomic counters in memory (typically
implemented in the GPU’s L2 for performance reasons). Each
atomic counter is initialized with a value equal to the number
of Compute Thread Arrays (CTAs) that issue writes to its

corresponding chunk, as determined by the compiler. During
execution, the counter decrements with every CTA that writes
to a chunk and triggers the transfer agent to begin copying data
when the counter reaches zero. PROACT requires applications
to issue a deterministic number of stores for it to identify
the completion of data generation on a per chunk basis and
perform the transfers.

Figure 5 shows a simplified example in which an appli-
cation’s memory is laid out linearly. As the producer kernel
produces data, it also updates the atomic counters, maintained
at a different location in memory. The transfer agent polls these
counters, and when the expected value is observed, the transfer
starts. Linear arrangements of data in memory are not required
but writes to contiguous memory result in better performance
and reduce the amount of storage overhead needed for the
atomic counters. We note that because PROACT typically
chooses transfer granularities of 4kB–16MB (shown later in
Table II), the storage overhead of the counters themselves is
not a significant concern.

C. Choosing the Decoupled Data Transfer Mechanism

By decoupling data transfer from local data generation, we
have the flexibility to choose an inter-GPU transfer mechanism
and transfer granularity that can maximize bandwidth utiliza-
tion between GPUs. The initiation overhead of the GPU DMA
engine is not appropriate for frequent data movement among
GPUs, leaving us with three alternatives.

Polling: In this technique, a small configurable number
of GPU warps are specialized to perform data transfers at
a given granularity. Auto-generated and managed entirely by
the PROACT runtime, this independently launched long-lived
kernel polls the structured data-ready atomic counters that are
updated by the application’s producer kernels. When ready,
the transfer threads read a chunk from the local staging
array and perform remote writes to the target GPU(s). While
PROACT’s profiler tries to minimize the number of transfer
threads required to maximize interconnect performance, ul-
timately, these threads and the polling of the counters (in a
software implementation) compete with the compute kernel(s)
for execution throughput. Memory consistency between the
producer threads and the decoupled transfer threads is enforced
using existing GPU memory ordering fences in our PROACT
software prototype.
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Dynamic Kernel Launches: CUDA Dynamic Parallelism
(CDP) [15] presents another transfer agent mechanism by
allowing a parent kernel to launch child kernels as needed. In
contrast to using polling which consumes compute bandwidth
in the polling loops that monitor for chunk transfer readiness,
dynamic kernels are launched only when a chunk is ready
for transfer and consume compute resources only during the
transfer itself. The CUDA runtime guarantees that parent
and child kernels have a fully consistent view of global
memory when the child kernel starts and ends, so no additional
synchronization is needed. PROACT implements CDP-based
transfers as an alternative to polling to avoid the compute
bandwidth cost of polling the transfer bitmaps. The trade-off,
however, is that CDP kernel launch has a higher initiation
latency than polling, though still lower than DMA-based
transfers.

To use CDP-based transfers when the atomic data counter
indicates that a data chunk is ready for transfer, PROACT’s
instrumentation in the producer kernel launches a dynamic ker-
nel (with a pre-configured number of threads) to perform the
transfer. This dynamic kernel transfers the data chunks to all
destination GPUs using tightly packed SM store instructions.

Direct Inline Stores: To evaluate the entire design space
of options, our PROACT software prototype also includes an
inline version wherein native P2P stores issue remote writes
to distribute data to remote GPUs as data are produced (i.e.,
without deferring to decoupled transfer threads), though we
do not expect this to perform well in practice. Direct inline
stores have the advantage that they spread remote writes over
the course of the producer kernel without the tracking overhead
of decoupled transfers, smoothing interconnect utilization as
long as remote writes are evenly distributed within the ker-
nel execution. Because GPU stores are usually non-blocking
and can coalesce adjacent writes, remote transfer latency is
hidden unless queuing resources are exhausted. Functionally,
a memory ordering barrier present implicitly at the end of
the producer kernel ensures that all transfers are complete and
subsequent accesses by the consumer kernel can then be made
locally. If data generated by the producer has poor spatial
locality, write coalescing may fail, inflating the interconnect
bandwidth required to transfer the application’s data relative
to the decoupled transfer mechanisms.

PROACT chooses from among the above three fine-grained
transfer mechanisms. A sys-scoped release operation causes
all PROACT buffers to be flushed.

D. Hardware Support for PROACT

In this study, we implement a software prototype of
PROACT because it allows us to validate the concept across
a wide range of GPU generations and interconnects, which
would be impossible to simulate in a reasonable time. With
additional hardware support, we envision an implementation
where the data readiness counters are provisioned in a ded-
icated memory structure that is initialized by the PROACT
runtime and associated with the base and bound of the
PROACT-enabled region located in GPU memory. Local

System 4x Kepler 4x Pascal 4x Volta 16x Volta
GPU Tesla K40m Tesla P100 Tesla V100 Tesla V100
GPU Arch Kepler Pascal Volta Volta
#GPUs 4 4 4 16
Interconnect PCIe3.0 NVLink NVLink2 NVSwitch
Bidirectional 16GB/s 150GB/s 300GB/s 300GB/s
BW per GPU aggregate aggregate aggregate aggregate
#Cores (SMs) 15 56 80 80
TFLOPS 1.43 5.3 7.8 7.8
BW (GB/sec) 288.4 720 920 920
Mem Cap (GB) 12 16 16 32

TABLE I: Key characteristics of the GPUs used in the exper-
iments and their interconnect topologies in test systems.

writes issued to a region tracked by PROACT automatically
update the corresponding counter, replacing the explicit in-
structions added by PROACT instrumentation to maintain
counters in our prototype. When a counter decrements to
zero, hardware signals a transfer agent to initiate a transfer
of the corresponding chunk. The transfer agent itself can be
realized as a simplified DMA engine with descriptors for the
geometry of each transfer prepared in advance in memory by
the PROACT runtime. The salient aspect of a hardware design
is that transfers are triggered automatically and without the
need for interaction with GPU drivers running on the host
CPU. Because PROACT can be prototyped entirely in software
(with software overheads quantified later in Figure 8), we leave
microarchitectural details of a PROACT hardware realization
for future work and focus on demonstrating the efficacy and
generality of the PROACT approach across numerous GPU
and interconnect topologies using our software prototype.

IV. EXPERIMENTAL METHODOLOGY

To evaluate PROACT’s software prototype, we perform our
experiments across three 4-GPU platforms (4× Kepler, 4×
Pascal, and 4× Volta) and one 16-GPU platform (16× Volta)
with key characteristics described in Table I [12], [16]–[20].

A. PROACT Code Framework

The PROACT software prototype is demonstrated in List-
ing 1. The compiler automatically incorporates PROACT
configuration parameters from the profiling run while inserting
code to enable PROACT transfers. It generates both inline
and decoupled versions of the code. PROACT also allocates
meta-data structures to track data generation. The frame-
work supports an arbitrary mapping between thread blocks
and copy chunks. The block-to-address mapping is provided
by proact ds.mapping, which can point to the utility code
PROACT provides for common mappings, such as one-to-one,
stride, and stencil patterns or user-defined mappings.

In proact init(), all atomic counters are initialized to the
number of CTAs that write to the corresponding data chunk.
During execution, PROACT then decrements the counter
associated with a chunk. The last decrement triggers the
copy of that chunk. Chunk size is selected automatically by
compile-time profiling, empirically balancing the overhead of
contention on atomic counters, copy initiation, and bandwidth
utilization.
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void proact_init(proact_ds* u_proact_ds) {
u_proact_ds.xfer_mech = xfer_mech_from_profiler;
u_proact_ds.counters = new counters[num_chunks];
for chunk = 0 to num_chunks-1

u_proact_ds.counters[chunk].value =
chunk_val_from_profiler[chunk];

if(u_proact_ds.xfer_mech == Polling) {
u_proact_ds.bitmap = new bool[num_chunks];
// copies data after bitmap values are set
launch_polling_kernel<<<...>>>(u_proact_ds);

}
}

__global__ void user_kernel_inline(proact_ds*
u_proact_ds, ...) {

// Generated from "ptr[tid] = computation(tid);"
temp = computation(tid);
u_proact_ds.region1[gpu0_id][tid] = temp;
u_proact_ds.region1[gpu1_id][tid] = temp;
u_proact_ds.region1[gpu2_id][tid] = temp;
u_proact_ds.region1[gpu3_id][tid] = temp;

}

__global__ void user_kernel_decoupled(proact_ds*
u_proact_ds, int* dest_arr, ...) {

ptr = u_proact_ds.region1[devid]; //global memory
ptr[tid] = computation(tid);

// Code below added by compiler
if(first_thread_of_cta) {
if(u_proact_ds.xfer_mech == Dedicated_HW) {

counter[chunk]--;
} else if(u_proact_ds.xfer_mech == CDP) {

atomicDec(counter[chunk]);
if(counter[chunk] == 0) {

src = map(ctaid, devid);
dest0 = map(ctaid, peerGPU0);
dest1 = map(ctaid, peerGPU1);
dest2 = map(ctaid, peerGPU2);
copy_kernel<<<nblockcdp, nthcdp>>>(src,

ctaid, dest0, dest1, dest2);
}

} else if(u_proact_ds.xfer_mech == Polling) {
atomicDec(counter[chunk]);
if(counter[chunk] == 0)

set bitmap[chunk];
}

}
}

}

int main() {
//Memory allocation by user for PROACT
cudaMalloc4GPU(base_addr_0, base_addr_1,

base_addr_2, base_addr_3);
proact_ds u_proact_ds;
u_proact_ds.ngpu = 4;
//one-to-one mapping
u_proact_ds.mapping = proact_contiguous;
u_proact_ds.region1 = {base_addr_0, base_addr_1,

base_addr_2, base_addr_3}
// ... other initialization parameters
proact_init(&u_proact_ds);

if(XFR_METHOD == inline)
user_kernel_inline<<<ncta, nthreads>>>(&

u_proact_ds,...);
else
user_kernel_decoupled<<<ncta, nthreads>>>(&

u_proact_ds,...);
}

Listing 1: PROACT sample code for 4 GPUs.

B. Evaluated Design Alternatives

To demonstrate the dynamic benefits of PROACT, we
compare it to several different static multi-GPU programming
approaches.

cudaMemcpy: In this paradigm, the computation kernel
is followed by a cudaMemcpy call that duplicates data
structures among all GPUs as needed. By the initiation of the
following kernel, all data structures accessed by that kernel are
resident in local GPU memory; there are no remote accesses.
However, there is also no overlap between data transfers and
compute.

Unified Memory (UM): We port our workload implementa-
tions to use UM by replacing conventional memory allocations
with UM allocations, removing explicit data transfers, and
adding the required inter-GPU synchronization. UM provides
hint APIs to allow expert users to try to avoid the page faults
and their large respective overheads. We hand-tested various
hinting strategies, including data prefetching, read-replication,
and pre-population of the GPU page tables to reduce fault
overheads, making a best-effort attempt to optimize each
application.

PROACT-inline: For PROACT-inline, remote stores are
injected directly into the source kernel to push data
to remote GPUs (similar to P2P stores), as shown in
user_kernel_inline in Listing 1, rather than relying on
the decoupled transfer agent.

PROACT-decoupled: PROACT-decoupled uses the full
flexibility of the PROACT mechanisms, using the profiling
tools to select the best data transfer method (Polling vs.
CUDA Dynamic Parallelism) and other transfer parameters
for each platform and application (number of transfer threads
and transfer granularity).

Infinite Interconnect BW: Finally, we include a limit
study that shows the performance when data transfers are
instantaneous. It represents the maximum speedup that ap-
plications can attain from optimizing data movement. Here
applications enjoy the benefit of fine-grained memory copies,
but the data transfer time and the overhead of fine-grained
tracking are neglected. Not attainable in practice, this study
helps us understand how close each multi-GPU programming
paradigm comes to a theoretical maximum performance. We
compute this performance bound by using the bulk transfer
implementation of each workload and then discounting its
execution by the time spent performing data copies with
cudaMemcpy.

C. Benchmarks

To evaluate PROACT, we implement multiple versions of
workloads across various scientific domains and microbench-
marks to demonstrate the differences between the PROACT
transfer mechanisms. All our benchmarks are compiled using
CUDA 9.1 [21].

Microbenchmarks: Our microbenchmarks consist of a syn-
thetic compute kernel running on a source GPU and generating
data needed in its entirety by the destination GPUs for the
next phase. Because the opportunity to overlap data transfer
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and kernel execution is maximized when the duration of the
compute kernel and transfer are equal, we tune the compute
time of the synthetic kernel to match the transfer time under
cudaMemcpy() transfers. Note that for this study, an ideal
interconnect with zero latency and infinite bandwidth will be
able to perform the data transfers instantaneously, resulting in a
speedup of 2× over a real interconnect. To obtain a reasonable
size of the compute kernel that can meet this criterion, we
fix the total amount of data to be transferred at 256MB and
tune the compute across various GPU generations. We then
instrument the compute kernel on the source GPU to track
its data production and initiate transfers via both PROACT’s
decoupled mechanisms.

MBIR X-ray CT: Model-Based Iterative Reconstruction
(MBIR) is a computational technique that can produce high-
quality images with low X-ray dose but at a high computa-
tional cost. We study an algorithm similar to that used in the
FDA-approved GE Veo CT system, the only MBIR system
approved for clinical use.

Page Rank: Page Rank assigns a ‘Page-rank score’ to web
pages based on their importance. Our benchmark assigns page-
rank scores to articles in the Wikipedia dataset [22].

Single Source Shortest Path (SSSP): Shortest Path algo-
rithms are used to navigate between physical locations, such
as in a road network [23]. In each iteration, every vertex
computes its shortest distance from the source vertex using
the Bellman-Ford algorithm [24]. We compute SSSP on the
HV15R dataset [22].

Alternating Least Squares (ALS): ALS is widely used
to perform matrix factorization in recommender systems. The
algorithm is iterative. In each iteration, it fixes the user matrix
and optimizes the item matrix and vice versa. Our study
performs ALS using Stochastic Gradient Descent for vertices
in the HV15R dataset [22].

Jacobi Solver: The Jacobi Solver iteratively solves a system
of linear equations of the form Ax = b, where A is the
coefficient matrix, b is a constant vector, and x is the required
solution vector. The solver iteratively computes the solution
vector using Jacobi’s method [25]. We performed our study
on the Jacobi solver for banded matrices, which arise widely
in finite element analysis [26], [27].

V. RESULTS

We first analyze PROACT’s decoupled transfer mechanisms
(Polling and CUDA Dynamic Parallelism) and compare them
against cudaMemcpy in a microbenchmark study to un-
derstand their performance variation across different GPU
architectures. Since PROACT’s inline mechanism performs
transfers at the granularity in which the data is generated,
we do not include it in the microbenchmark study. However,
all these transfer mechanisms are included in the results we
present later. Also note that the PROACT framework picks the
best out of the decoupled and inline variants as the transfer
mechanism. We present them separately in the results for
clarity.

A. Microbenchmarking Decoupled Transfer Mechanisms

Figure 6 shows the performance of the microbenchmark
described in Section IV-C when varying the granularity for
decoupled transfers from 4KB to 256MB, where each source
thread block generates 4KB of data.

For the Kepler-based system and CDP case, the performance
curve exhibits three regions. When the transfers happen at
fine granularity (less than 16KB per chunk), performance
is initiation-bound. Initiation overheads dominate, and there
is a net slowdown relative to cudaMemcpy. The transfers
are bandwidth-bound from 16KB to 1MB per chunk, and
proactive transfers reach their peak speedup of 1.6×. As the
granularity increases beyond 1MB, we enter a tail–transfer–
bound region, where the left-over transfers, after the compute
kernel completes (which we call the tail transfers) become
significant, leading to a net slowdown. Polling substantially
underperforms both cudaMemcpy and CDP on Kepler due to
GPU resources wasted by numerous fruitless poll loops. The
effect of utilizing a portion of GPU’s compute and memory
resources for polling loops is much more detrimental in the
case of Kepler than Pascal or Volta because of lower compute
and memory bandwidth availability.

For the Pascal-based system, CDP matches the trend of
the Kepler-based system, offering a peak speedup of 1.8×
in the bandwidth-bound region. However, polling performs
even better, attaining up to 1.9× speedup once the transfer
granularity is large enough so that the delay of iterating over
the polling bitmap is amortized over the transfer operations.

CDP results in slowdowns at low granularities in the Volta-
based system while achieving a 1.5× speedup at large granu-
larities. The initiation overhead of dynamic kernels is higher
on Volta than the other architectures. Polling offers higher
speedups at nearly all granularities.

On current GPUs, launching dynamic kernels requires in-
tervention from the host driver. As such, the degree to which
dynamic kernel launches impact the parent’s performance
depends on the GPU hardware and the driver. We have ob-
served this cost to vary substantially across GPU generations.
Furthermore, the degree the data transfer kernel interferes
with the parent computation depends on the number of warps
in the data transfer kernel and again varies across GPU
platforms. Thus, per GPU platform, the highest-performing
data transfer mechanism varies across transfer granularity,
transfer mechanism (DMA vs. fine-grained), and transfer agent
type (polling vs. CUDA dynamic parallelism)

B. End-to-End Performance on Full Applications

Figure 7 shows the speedups achievable on a 4-GPU system
over a single GPU across three different GPU generations, and
Table II depicts the corresponding PROACT configurations.

With programmer-provided cudaMemAdvise hints, UM
can substantially improve performance over a single GPU
for some applications. However, since the hardware support
for page faulting and migration was added only in the Pas-
cal architecture, Kepler, an earlier architecture, uses a more

146



0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

4096 65536 1048576 16777216Sp
ee

du
p 

ov
er

 c
ud

aM
em

cp
y 

at
 ke

rn
el

 
bo

un
da

ry

Fine grained copies - chunk size (bytes)

Fine grained copies using CUDA Dynamic Parallelism

Fine grained copies using Polling

4KB                           64KB                           1MB                          16MB

(a) 4x Kepler

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

4096 65536 1048576 16777216

Sp
ee

du
p 

ov
er

 c
ud

aM
em

cp
y 

at
 

ke
rn

el
 b

ou
nd

ar
y

Fine grained copies - chunk size (bytes)

4KB                               64KB 1MB                             16MB

(b) 4x Pascal

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

4096 65536 1048576 16777216

Sp
ee

du
p 

ov
er

 c
ud

aM
em

cp
y 

at
 

ke
rn

el
 b

ou
nd

ar
y

Fine grained copies - chunk size (bytes)
4KB                              64KB                           1MB                           16MB

(c) 4x Volta

Fig. 6: Performance of the PROACT microbenchmarks
showing the effect of decoupled transfer paradigm and
transfer granularity.

primitive version of Unified Memory, resulting in lower per-
formance. For Jacobi, UM even outperforms cudaMemcpy
duplication. The large number of sporadic accesses results
in expensive page faulting and migration, causing UM to
perform poorly for the Pagerank application in Pascal and
Volta generations.

Performing explicit duplication via cudaMemcpy on these
4-GPU systems outperforms a single GPU for all applications
except Pagerank, where it underperforms a single GPU on our
Volta- and Pascal-based systems.

PROACT-inline outperforms decoupled transfers in just four
cases where the applications naturally exhibit spatial locality.
In Jacobi and X Ray-CT, GPU threads are scheduled so that
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Fig. 7: 4-GPU speedup under each data transfer method
for different hardware configurations.

data are produced densely in increasing address order, leading
to excellent write coalescing within the SM. In these cases,
the increase in interconnect efficiency achieved by decoupling
data transfers is insufficient to overcome the overheads of
the software implementation consuming SM resources. This
marginal difference in performance is an artifact of prototyping
PROACT-decoupled in software, and we expect a hardware
implementation to outperform the inline variant in all cases.

In the remaining applications, where coalescing is poor due
to more random memory update ordering, PROACT-decoupled
performs best, as its larger-grain transfers always coalesce.
For example, in ALS on 4x Volta, there are 26× more
store transactions over the interconnect under PROACT-inline
than PROACT-decoupled due to poor coalescing. Depending
on the nature of the application and system architecture,
PROACT picks the most suitable mechanism to perform the
data transfers.

The abundant parallelism available in these applications
is apparent in the near-linear scaling achieved under the
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Application 4x Kepler 4x Pascal 4x Volta
X-ray CT D 16kB 256 CDP I I
Jacobi I I D 128kB 2048 Poll
Pagerank D 16kB 256 CDP D 1MB 4096 Poll D 128kB 2048 Poll
SSSP D 16kB 256 CDP D 1MB 4096 Poll D 128kB 2048 Poll
ALS D 16kB 256 CDP D 1MB 4096 Poll D 128kB 2048 Poll

TABLE II: Best performing configuration as determined by the
PROACT profiler. Each configuration is represented as trans-
fer scheme (I: PROACT-inline and D: PROACT-decoupled),
transfer granularity (range studied: 4kB to 16MB), transfer
thread count (range studied: 32 to 8192), transfer mechanism
(Poll: Polling and CDP: CUDA Dynamic Parallelism).

theoretical upper bound with infinite interconnect bandwidth.
Regardless of GPU generation, the geometric mean theoretical
opportunity is a 3.6× speedup over a single GPU for this
set of applications. PROACT enables 3× speedup across all
generations, capturing 83% of the possible opportunity. The
story is more complicated for cudaMemcpy, where there
is significantly more variation across GPU generations but
with an average of 2.1× speedup over a single GPU. UM
displays the most variable results, achieving good speedups for
some applications, on some platforms, but on average under-
performing even a single-GPU configuration. We conclude
that, even with programmer-directed hints, traditional fault-
based UM can not be relied upon to achieve peak performance.
Thus, compared with different communication paradigms,
the benefits of PROACT (both inline and decoupled) over
cudaMemcpy come from its ability to overlap compute and
communication, and the benefits over UM come from avoiding
expensive page faulting and migration. PROACT-decoupled
performs better than PROACT-inline when the higher in-
terconnect efficiency achieved by decoupling outweighs the
overheads on the compute kernel and vice-versa.

C. Decomposing PROACT’s Performance

To further understand the performance, we analyze the over-
heads incurred by PROACT. PROACT-inline incurs no over-
head on computation since there is no tracking instrumentation
involved. For PROACT-decoupled, the largest performance
overhead stems from prototyping the data tracking interface
entirely in software. We determine the overhead by comparing
runtime with tracking instrumentation but without the data
transfers to the runtime of the theoretical infinite interconnect
BW case. We report this overhead in Figure 8.

The figure reveals that the overhead averages between 10%
and 15%, depending on the GPU platform. The variation
across applications is significant, ranging from negligible over-
head to as much as 40% for Pagerank. Note that the overhead
is included in all our results (both in Figure 7 and Figure 10),
which shows that PROACT-decoupled achieves substantial
performance improvements despite the software overhead.
A hardware implementation will alleviate the overheads on
the compute kernel and can further improve performance,
motivating its inclusion in future GPU architectures.

To understand how efficient PROACT is at overlapping data
transfer and computation, we investigate the fraction of data
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Fig. 9: Transfer overlap achieved by PROACT.

transfer overhead overlapped with computation on each of
the 4-GPU systems. We obtain this result by executing each
application with the instrumentation and initiation overheads
of PROACT but eliding the stores that actually perform the
data transfers to remote GPU memory. The difference between
the runtime with and without the data transfer operations
reveals the portion of transfer time that is not overlapped. We
then determine the fraction of overlap by comparing the non-
overlapped transfer time to the baseline duplication time with
cudaMemcpy, reported in Figure 9.

Although there are variations among applications and plat-
forms, Figure 9 reveals that PROACT always hides at least
75% of transfer time. In many cases, it can overlap nearly
100% of the communication, which will enable great scalabil-
ity at high GPU counts relative to cudaMemcpy duplication.
(which achieves no transfer overlap). Though UM with hints
can help achieve overlap of compute and communication
in theory, we note that this requires substantial programmer
effort to track data generation at small granularities, schedule
prefetch operations, and synchronize with computation.

D. Strong Scaling with PROACT

To this point, we have shown studies of PROACT’s (inline
and decoupled) performance impact for 4-GPU systems with
different generations of GPUs and interconnects. We next
consider the scalability of PROACT with multi-GPU system
size. Figure 10 shows the absolute speedup that PROACT
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Fig. 10: Scalability achieved on different hardware configurations.

achieves on Kepler, Pascal, and Volta for systems with up
to 4, 4, and 16 GPUs, respectively.

In Figure 10, we omit unified memory results, which do not
scale well (on average) and instead focus on the performance
improvements with PROACT and cudaMemcpy duplication
compared to the single-GPU performance achieved on the
respective system. We see that when employing just two
GPUs, performance is insensitive to the transfer method across
all three platforms. This result is not surprising, as the total
fraction of time spent in data transfers is insignificant with
only two GPUs. However, as the number of GPUs increases
to four (on the Kepler- and Pascal-based systems), and five-six
on the Volta-based system, performance with cudaMemcpy
flattens and even begins decreasing.

This effect manifests beyond just two GPUs on the Kepler
system, which we hypothesize is because our PCIe-based Ke-
pler system has the lowest inter-GPU bandwidth; thus, transfer
overheads start affecting performance more quickly than in the
other systems. We see that, on the Pascal system, performance
with cudaMemcpy is generally competitive up to three GPUs
before leveling off. When examining many GPU scaling on
the Volta-based prototype system, cudaMemcpy scales to five
GPUs before leveling off. PROACT, however, exhibits nearly
linear multi-GPU scaling, indicating that it is doing a good job
using the interconnect bandwidth effectively and overlapping
GPU communication with computation. Overall, on our 16-
GPU Volta system, PROACT achieves a mean speedup of
1.2×, 2.2×, and 5.3× over cudaMemcpy duplication at 4-
, 8-, and 16-GPU configurations, respectively, while coming

within 90%, 87%, and 77% of the theoretical application
performance limit.

E. Discussion

The performance benefits of PROACT come from its ability
to perform fine-grained data transfers, thus ensuring an overlap
of compute and communication. Thus, applications satisfying
the following conditions will benefit from PROACT: (1) strong
scaling performance is limited by inter-GPU communication,
(2) the write access pattern of the application is deterministic
in nature, (3) programmers use structured programming, i.e.,
they can annotate the shared data structures that PROACT
needs for tracking writes. For compute-bound applications,
the compute overheads of PROACT software prototype may
render it less suitable; however, such applications will still
benefit from a PROACT hardware implementation. Also, for
applications that perform sporadic accesses at small granular-
ities, the overheads of initiating decoupled transfers will hurt
the performance of PROACT-decoupled, and the profiler will
pick PROACT-inline instead.

VI. RELATED WORK

Accelerating scientific applications using GPUs [28]–[34]
and optimizing GPU communication [9], [35], [36] has been
widely studied, but in what are now legacy contexts, given the
introduction of direct switch-connected LD/ST-based multi-
GPU systems.

Communication in GPU systems: To our knowledge, ours
is the first work to explore proactive direct stores to optimize
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multi-GPU communication. Prior works range from optimiz-
ing communication between GPU thread blocks to methods
that improve MPI communication among GPUs spread across
multiple nodes. Xiao et al. [37] optimize inter-block GPU
communication via barrier synchronization. CudaDMA [38]
overlaps computation and data transfer between GPU global
and shared memory. MVAPICH2-GPU [9] integrates CUDA
data movement transparently with MPI. Potluri et al. provide
intra-node MPI communication on multi-GPU nodes in [35].
CGCM [39] is an automated system for managing and optimiz-
ing CPU-GPU communication. Chen et al. [40] explore weak
execution ordering to reduce host synchronization overhead.

Groute [41] provides an asynchronous multi-GPU model
for irregular applications but does not consider optimizing
fine-grained communications between GPUs. Even in MCM-
GPU [42], where a package-level integration of multiple GPU
modules is done, PROACT could help improve performance
by effecting efficient copies to local DRAM partitions. Prior
work [43]–[46] has explored various hardware and software
mechanisms to improve multi-GPU performance. Many other
works [47]–[51] perform NUMA-aware optimizations to im-
prove GPU performance and perform hardware-based peer
caching [52]–[56].

Performance of heterogeneous systems: Staged Memory
Scheduling [57] decouples the primary tasks of a memory
controller to improve the performance of CPU-GPU systems.
Sutherland et al. [58] improve performance by using texture
cache approximation on GPUs. While Schaa et al. [59] al-
low developers to accurately predict execution time of GPU
scaling, Yao et al. [60] provide a theoretical analysis of mul-
ticore scalability. Unicorn [61] provides a parallel program-
ming model for hybrid CPU-GPU clusters, while [62], [63]
provide frameworks for automatic multi-GPU parallelization.
CAWS [64] provides a scheduling policy, and Bhattacharjee
et al. propose thread criticality predictors for parallel applica-
tions [65]. Dymaxion [66] attempts to overlap CPU-GPU PCIe
transfer with data layout transformations on the GPU, while
Lustig et al. [52] offer techniques for more effective GPU
offloading. These topics are orthogonal and complementary
to optimizing fine-grained multi-GPU communication, the
subject of this work.

Auto-tuning and code generation: General literature in
auto-tuners include automating the construction of compiler
heuristics using machine learning [67], automatic tuning of
heuristics for code inlining [68], and a genetic algorithm ap-
proach for compiler optimizations [69]. Additionally, obtain-
ing the heuristic scheduling algorithm automatically [70] and
finding the shortest program to compute a function [71] have
been studied previously. In the GPU realm, multiple works
have explored application-specific auto-tuning for GPUs [72]–
[78], but this work provides a new methodology for scaling
multi-GPU performance. Spafford et al. attempt to improve
load balancing and bus utilization [79], yet they do not
attempt to overlap compute with communication. CLTune [80]
provides a generic auto-tuner for OpenCL Kernels but does not
consider inter-device communication. While different works

have explored code generation for specific GPU applica-
tions [81]–[85], we attempt to create a generic mechanism
allowing all applications to scale.

VII. CONCLUSION

In this work, we proposed PROACT, a hardware and
software system that improves multi-GPU performance by
overcoming the limitations of existing inter-GPU commu-
nication mechanisms. PROACT combines the flexibility of
peer-to-peer transfers with the efficiency of bulk transfers
to enable interconnect friendly data transfers while hiding
transfer latencies. Demonstrated across three different 4-GPU
system architectures, PROACT provides an average speedup
of 3.0× over a single-GPU implementation, capturing 83% of
the theoretical limit. We also show how PROACT provides
dramatic scalability improvements on next-generation systems
with large GPU counts, achieving an 11.0× average speedup
over a single-GPU implementation while capturing 77% of
the available opportunity. Scalable multi-GPU programming is
no easy task; to maximize programmer productivity, runtime
systems like PROACT will be necessary to enable rapid devel-
opment cycles while leveraging next-generation architectural
improvements in future GPUs.
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