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ABSTRACT

This paper discusses algorithms for phase retrieval where the
measurements follow independent Poisson distributions. We
developed an optimization problem based on maximum like-
lihood estimation (MLE) for the Poisson model and applied
Wirtinger flow algorithm to solve it. Simulation results with
a random Gaussian sensing matrix and Poisson measurement
noise demonstrated that the Wirtinger flow algorithm based
on the Poisson model produced higher quality reconstructions
than when algorithms derived from Gaussian noise models
(Wirtinger flow, Gerchberg Saxton) are applied to such data,
with significantly improved computational efficiency.

Index Terms— Poisson phase retrieval, Non-convex op-
timization.

1. INTRODUCTION

Phase retrieval is an inverse problem that has many appli-
cations in engineering and applied physics [1, 2], including
radar [3], X-ray crystallography [4], astronomical imaging [5]
and speech processing [6], where the goal is to recover the
signal from only the magnitude of linear measurements, such
as the magnitude of its Fourier transform [7].

In most prior works, the measurement vector y ∈ RM
was assumed to have statistically independent elements with
Gaussian distributions:

yi ∼ N (|a′ix|2 + bi, σ
2),

where a′i denotes the ith row of the system matrix A ∈
CM×N , x ∈ CN denotes the true unknown signal, and bi
denotes a known mean background signal (often simply zero)
for the ith measurement, where i = 1, . . . ,M . For the Gaus-
sian noise model, the maximum-likelihood estimate of x
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corresponds to the following optimization problem:

x̂ = argmin
x∈CN

f(x), f(x) ,
∑
i

∣∣∣yi − bi − ∣∣a′ix∣∣2∣∣∣2. (1)

Many algorithms based on (1) have been proposed for phase
retrieval, such as Wirtinger Flow [8], Gerchberg Saxton [9]
and Majorizing Minimization [7]. However, in some low-
photon count applications [10–14], a Poisson noise model is
more appropriate:

yi ∼ Poisson(|a′ix|2 + bi), (2)

where here bi ≥ 0 denotes known mean background counts
for the ith measurement, e.g., as arising from dark current
[15]. Algorithms derived from Gaussian ML models are the-
oretically suboptimal in this case. Instead, the following Pois-
son ML model is more natural:

x̂ =argmin
x∈CN

f(x), f(x) ,
∑
i

ψ(a′ix; yi, bi),

ψ(v; y, b) , (|v|2 + b)− y log(|v|2 + b). (3)

Similar problems for the case bi = 0 have been considered
previously [16–21]. Many optical sensors also have Gaus-
sian readout noise [22, 23]; the log likelihood for a Poisson
+ Gaussian distribution is complicated, so a common approx-
imation is to use a shifted Poisson model that also leads to
the cost function in (3). An alternative to the shifted Pois-
son model could be to work with an unbiased inverse trans-
formation of a generalized Anscombe transform approxima-
tion [24]. This paper will focus on algorithms for the pure
Poisson noise model (2); algorithms for a Poisson plus Gaus-
sian noise model can be an interesting direction for future
work.

However, one can verify that the function h(|v|; y, b) =
ψ(v; y, b) where h(r; y, b) , (r2 + b)− y log(r2 + b) is non-
convex in r ∈ R when 0 < b < y. That property, combined
with the modulus within the logarithm, makes (3) a challeng-
ing optimization problem. One potential advantage of assum-
ing bi > 0 is the descent direction (4) of ψ(v) is well de-
fined, so that algorithms based on the gradient descent, i.e.,
Wirtinger flow, are well-suited to “solve” (i.e., descend) this
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non-convex optimization problem. One can verify that an as-
cent direction for ψ for v ∈ C is

ψ̇(v; y, b) = 2v

(
1− y

|v|2 + b

)
. (4)

2. WIRTINGER FLOW METHOD

Reference [8] proposed a Wirtinger flow algorithm for the
Gaussian model (3) based on the steepest descent method
with a heuristic step size. We adopted the steepest descent
idea for the Poisson model (1), using a modified gradient term
derived from (4). In addition, instead of empirically choos-
ing the scheduling term µ, we did a line search as in [7]
to seek the best value of µ. Algorithm 1 shows our modi-
fied Wirtinger flow (WF-Poisson) method, where the dot sub-
script denotes element-wise function application, as in Julia.
For comparison, we also implemented the Gerchberg Sax-
ton and Wirtinger flow methods that are both derived from
Gaussian noise models (GS and WF-Gaussian). For WF-
Gaussian, we simply modified the gradient term ∇f to be
4A′diag(|Ax(k)|2 −max(y − b, 0))Ax(k). For GS, we im-
plemented the pseudo code shown in [7].

Algorithm 1: Wirtinger flow under Poisson noise
Input: A,y, b and n (number of iterations)
Initialize: x(0) ← random Gaussian vector
for k = 0, ..., n− 1 do
∇f (k) = A′∇ψ.(Ax(k);y, b)
µ = 1
x(k+1) = x(k) − µ∇f (k)
while f(x(k+1)) > f(x(k))− 0.01µ‖∇f (k)‖22 do
µ← µ/2
x(k+1) = x(k) − µ∇f (k)

end
end
Output: x(n)

By design, the Wirtinger flow method is guaranteed to de-
crease the cost function every iteration (strictly speaking it is
non-increasing). Because the cost function is nonconvex, it is
hard to say anything about convergence to a global minimizer.
We find empirically (results not shown) that when the number
of measurements M is close to N than the result of the WF
method can depend significantly on the initial estimate x(0),
but ifM is much larger thanN then the NRMSE of the output
of the WF method is insensitive to the initializer.

3. EXPERIMENTS

3.1. Experiment Setup

We adopted two finite length (N = 100) signals and one
piece-wise uniform image (64×64) as the true signal/image in

our experiments. The first finite length signal is a real, piece-
wise constant signal (xtrue-A); the second is a complex sig-
nal (xtrue-B) whose real part is the same as xtrue-A with piece-
wise constant imaginary part. Fig. 1 shows xtrue-A, the imag-
inary part of xtrue-B and the true image xtrue-C. To validate
these algorithms in different experimental settings, we chose
the number of measurements (M ) from a set of numbers that
range from 1e3 to 6e3 with an interval of 1e3. The system ma-
trix A was a zero-mean complex Gaussian matrix, scaled by
different constants such that the average of |a′ixtrue|2 reached
2,3,4 and 5, respectively. The mean background counts (b)
were set to 1 in all cases. Elements in the measurement vector
y were simulated to have independent Poisson distributions
per (2). For xtrue-A and xtrue-B, we initialized x as a Gaussian
random vector and ran all algorithms for 250 iterations; for
xtrue-C, the initial estimate x(0) was a random vector follow-
ing uniform distribution ranging from 0 to 1 (exploiting the
nonnegativity of x) and we ran all algorithms for 100 itera-
tions to save computing time. All simulations ran on Mac OS
with Intel Core i9@2.3 GHz CPU and 16 GB memory.

(a) (b)

(c)

Fig. 1. True signals used in simulations. Subfigure (a) de-
notes a real, piece-wise constant signal xtrue-A; subfigure (b)
denotes the imaginary part of the complex signal xtrue-B; sub-
figure (c) refers to the real, piece-wise uniform image xtrue-C.

3.2. Convergence Analysis

Fig. 2 illustrates the convergence rate of cost function value
(3) versus number of iterations. The min{f(x)} in the y-axis
label denotes the minimum of cost function values among
all algorithms over 250 iterations. As expected, WF-Poisson
achieved much lower cost function values at convergence
compared to GS and WF-Gaussian. Fig. 3 shows the NRMSE
versus wall-time for the three algorithms for a single noise
realization. Compared to GS and WF-Gaussian, WF-Poisson
decreased NRMSE much more rapidly.
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To handle the phase ambiguity (all the algorithms can re-
cover the signal only to within a constant phase shift due to
the loss of global phase information), we used the following
NRMSE metric as derived in [7]:

NRMSE =
‖x̂− xtrue · ejφ‖2
‖xtrue · ejφ‖2

, ejφ = sign(x′truex̂). (5)

(a) xtrue-A

(b) xtrue-B

Fig. 2. Cost function value versus number of iterations. The
average of |a′ix|2 is set to 2 and M = 3000.

3.3. Accuracy comparison

As a more systematic investigation of phase retrieval ac-
curacy, Fig. 4 shows the NRMSE averaged across 3 real-
izations of the sensing matrix A for all three algorithms
for a range of values of M , the number of measurements.
WF-Poisson demonstrated consistently improved NRMSE
compared to GS and WF-Gaussian, with an average improve-
ment of 21.7% / 12.5% compared to GS and an average im-
provement of 16.4% / 12.5% compared to WF-Gaussian, for
real/complex true signals. Tab. 1 shows additional NRMSE
statistics regarding across different count levels E[|a′ix|2],
where WF-Poisson also showed consistent improvement.

Fig. 5 shows the reconstructed images and the correspond-
ing NRMSE w.r.t. xtrue-C for the 3 phase retrieval methods.
Compared to GS and WF-Gaussian, WF-Poisson improved
NRMSE by 25.4% and 15.3%, respectively.

(a) xtrue-A

(b) xtrue-B

Fig. 3. Cost function value versus time. The average of |a′ix|2
is set to 2 and M = 3000.

(a) NRMSE for real case (xtrue-A)

(b) NRMSE for complex case (xtrue-B)

Fig. 4. NRMSE comparison across different number of mea-
surements. The average of |a′ix|2 is set to 2.
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4. DISCUSSION AND CONCLUSION

With simulated results showing consistently lower NRMSE
tested on real/complex true signals/images, we demonstrated
our modified Wirtinger Flow algorithm based on the Poisson
ML model has superior accuracy than algorithms based on
Gaussian ML model (Wirtinger Flow and Gerchberg Saxton),
for measurements having Poisson noise. The WF-Poisson al-
gorithm also demonstrated substantially faster speed in terms
of decreasing of NRMSE versus time in this setting, com-
pared to the Gaussian ML algorithms. Future works include
investigating algorithms that can also handle non-smooth reg-
ularizers (i.e., `1 norm) and the case when bi = 0, comparing
with more algorithms in terms of efficiency and accuracy, and
further optimizing algorithms derived from the Poisson noise
model.

|a′ix|2 = 3 Real signal (xtrue-A)
NRMSE(%)/M 1000 2000 3000 4000 5000 6000
WF Gaussian 18.6 13.3 11.1 10.0 8.3 8.0
WF Poisson 16.6 11.1 9.4 8.2 6.9 6.7

GS 17.9 13.2 11.4 10.7 9.6 9.2
|a′ix|2 = 3 Complex signal (xtrue-B)

NRMSE(%)/M 1000 2000 3000 4000 5000 6000
WF Gaussian 33.7 20.1 16.3 14.0 13.4 11.8
WF Poisson 28.4 16.8 13.8 11.8 11.1 9.8

GS 30.6 18.9 15.9 13.6 12.8 12.2
|a′ix|2 = 4 Real signal (xtrue-A)

NRMSE(%)/M 1000 2000 3000 4000 5000 6000
WF Gaussian 16.6 11.6 10.3 8.7 7.5 7.1
WF Poisson 14.6 9.5 8.4 6.7 6.2 5.6

GS 15.9 10.5 10.2 8.2 8.1 7.4
|a′ix|2 = 4 Complex signal (xtrue-B)

NRMSE(%)/M 1000 2000 3000 4000 5000 6000
WF Gaussian 23.7 16.6 14.3 13.0 10.3 9.9
WF Poisson 21.2 14.4 11.9 10.1 8.5 7.9

GS 22.6 16.1 13.4 11.3 10.1 9.4
|a′ix|2 = 5 Real signal (xtrue-A)

NRMSE(%)/M 1000 2000 3000 4000 5000 6000
WF Gaussian 14.8 9.7 8.8 8.2 7.1 6.2
WF Poisson 13.2 8.3 7.3 6.8 5.5 5.0

GS 14.6 9.9 8.7 7.8 6.9 6.3
|a′ix|2 = 5 Complex signal (xtrue-B)

NRMSE(%)/M 1000 2000 3000 4000 5000 6000
WF Gaussian 22.5 15.5 12.8 11.0 9.4 8.5
WF Poisson 18.7 13.0 10.5 8.9 7.6 7.2

GS 19.6 14.5 12.0 10.0 8.6 8.5

Table 1. NRMSE results comparing the 3 phase retrieval
methods (WF-Gaussian, WF-Poisson and GS) for various
number of measurements M and mean Poisson count levels.
The WF method designed for Poisson noise consistently has
the lowest error for all cases.

(a) True image (xtrue-C)

(b) Reconstructed image by GS, NRMSE = 13.4%

(c) Reconstructed image by WF Gaussian, NRMSE = 11.8%

(d) Reconstructed image by WF Poisson, NRMSE = 10.0%
Fig. 5. Reconstructed image and corresponding NRMSE for
xtrue-C regarding these 3 algorithms. Number of measure-
ments (M ) and the average of |a′ix|2 were set to 2e5 and 2,
respectively.
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