
SPECT/CT scatter estimation using a deep
convolutional neural network: implementation in

Y-90 imaging
Haowei Xiang, Student Member, IEEE, Hongki Lim, Student Member, IEEE,

Jeffrey A. Fessler, Fellow, IEEE, and Yuni K. Dewaraja, Member, IEEE

Abstract—Monte Carlo (MC) based scatter modeling in Y-90
bremsstrahlung SPECT has demonstrated improved image qual-
ity and quantitative accuracy, but at the expense of computational
complexity. We present a deep learning approach for SPECT/CT
scatter estimation that substantially reduces the computation time.
Once trained, our deep Convolutional Neural Network (CNN)
takes the projections from the SPECT camera and CT-based
attenuation map as input and outputs the scatter projections. MC
simulated digital phantom data, where true scatter is known, is
used during the training process and the network is trained to
match the MC scatter estimation. For our network, Adam is used
as optimizer, the learning rate is 1e-4, the mean square error is
used as loss, the batch size is 32, and we train this CNN with
100 epochs. In testing with a hot sphere phantom simulation and
a liver phantom measurement, visual image quality and contrast
recovery was similar with the CNN and MC scatter estimation
methods, but the CNN scatter estimate was generated in a fraction
of the time needed for the MC scatter estimation ( about 1 min
for CNN vs 1-2 hours for MC). The short processing time with
CNN while maintaining accuracy has high clinical significance for
quantitative Y-90 SPECT imaging.

I. INTRODUCTION

ACCURATE scatter estimation is essential for quantitative
SPECT applications. It is generally accepted that the

Monte Carlo (MC) method that fully models the physics of
photon transport in the patient and camera provides the most
accurate scatter estimation. However, since MC simulation
is very computationally expensive, simpler but less accurate
methods such as energy window based estimates are commonly
used in clinics. However, energy window based methods are
generally valid only for gamma-ray emitters with associated
photopeak(s) and not for bremsstrahlung photons where the
energy spectrum is continuous. MC based scatter modeling
in Y-90 bremsstrahlung SPECT imaging has demonstrated
improved image quality and quantitative accuracy [1][2].

We propose a deep learning based scatter estimation that
has the potential to overcome the accuracy - computation
efficiency trade-off of MC and energy-window based methods.
While our proposed method can be generalized to any SPECT
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imaging study, we implement and evaluate it here for the chal-
lenging case of scatter compensation in Y-90 bremsstrahlung
SPECT/CT. The Y-90 bremsstrahlung photon energies extend
up to 2.3 MeV, and there is substantial downscatter of the
higher energy photons into the lower energy acquisition win-
dows that are typically set in the range 100 - 250 keV. We
compare the performance of our proposed method with results
from our previous Monte Carlo scatter model [1] as well as the
true scatter (available in the case of simulated data) in clinically
relevant phantom simulations and measurements.

Recently, deep learning methods have been proposed for fast
scatter estimation in PET [3][4] and CT [5] reconstruction. For
SPECT scatter correction, although artificial neural networks
trained on spectral analysis were proposed over 2 decades ago
[6][7], to our knowledge, there have been no studies that exploit
the recent advances in deep learning.

II. METHODS

Our deep Convolutional Neural Network (CNN) takes the
projections from the SPECT camera and the projected CT-
based attenuation map as input and outputs the scatter esti-
mation for each projection. We use MC [8] simulated true
scatter as reference and the CNN is trained to minimize the
mean square error (MSE) between the output and the reference.
The MC (SIMIND) simulation model includes full photon
transport in the patient and SPECT camera, including scatter
effects in the patient, collimator, detector, and backscatter. MC
simulation is only needed during the training process since the
network is trained to match the SIMIND scatter estimation.

A. Reconstruction model

Ordered Subset Expectation Maximization (OSEM) is used
for image reconstruction. The generated scatter estimate, s, is
included as an additive term in the forward model: y = Ax+s,
where A is the system matrix, y is the measured projections,
and x is the unknown image. All of our results use 30 OSEM
iteration with eight subsets, which is sufficient to let the metrics
converge based on our observation.

B. Simulated data generation

A challenge with using deep learning in SPECT scatter cor-
rection is the fact that the ground truth (true scatter) is unknown
in measurements. To obtain enough data with known ground
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truth for training/testing, SPECT projections, typically 128,
corresponding to different digital phantoms were generated by
SIMIND. These digital phantoms were 1) NEMA-like PET
phantom with sphere volumes expanded to be more relevant
to SPECT 2) a hot sphere Data Spectrum phantom and 3)
six virtual patient phantoms that we generated from SPECT
and segmented CT images corresponding to six patients who
underwent Y-90 SPECT/CT imaging after Y-90 microsphere
radioembolization at our clinic. A Symbia Intevo SPECT/CT
with high energy collimators and a 105 to 195 keV window was
modeled. After each SPECT simulation, the output projections
were scaled to a clinically realistic count level before adding
Poisson noise.

C. Measured data

Y-90 SPECT/CT measurements from our Symbia Intevo
scanner were included in the testing data set. This included
a measurement with a physical liver phantom with clinically
relevant Y-90 activity levels in the liver and lesion inserts. In
the case of measured data, the true scatter is unknown, but the
comparison can be made to results from our previous Monte
Carlo based scatter estimation method.

D. Network architecture and training procedure
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Fig. 1. CNN Diagram: Upper-left input is projection of attenuation map,
lower-left is SPECT projection and output is estimated scatter projection.

Figure 1 shows our CNN structure which uses both the
SPECT projections and also projection of CT-based attenuation
map to estimate scatter. For our CNN, Adam is used as
optimizer, the learning rate is 1e-4, the mean square error is
used as loss, the batch size is 32, and we train this CNN with
100 epochs.

The digital Data Spectrum phantom and three virtual patients
(512 projections and mumaps in total) are used to train the
CNN, and two virtual patients are used for validation.

E. Metrics definition

Activity Recovery (AR) for object i

AR = Ai/A
true
i ∗ 100%, (1)

where Ai is the estimated activity, Atrue
i is the true activity in

lesion i.

Contrast Recovery (CR) is defined as

CR =
Ci/Cbkg − 1

Atrue
i /Atrue

bkg − 1
∗ 100%, (2)

where Ci is the mean count in lesion i, Cbkg is the mean count
in the background, Atrue

bkg is the true activity in the background.
Cold region Residual Error is calculated as

Qi =
Ci

Cbkg
∗ 100%, (3)

with the same notation as before.

III. RESULTS

A. Training Process

Figure 2 shows the Mean Square Error (MSE) vs. epochs
for training and validation.

It takes about 8 hours to train this CNN on an i5 CPU and
approximately half an hour to train on a GTX 1080 8GB GPU.
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Fig. 2. Training and validation MSE (left) and sample profile in projection
domain (right)

B. Phantom test results

The digital NEMA-like phantom and the physical liver
phantom were used for testing. For the NEMA-like phantom,
a profile across a scatter projection estimated by the CNN
is compared with the true scatter from SIMIND in Figure 2.
Reconstructed images in Figures 3 and 5 for the digital phan-
toms and phantom measurement show similar image quality
with CNN and MC scatter estimates. Table III-B compares the
Contrast Recovery for hot inserts and residual error of the cold
lung region in the reconstructed image of the phantoms. Green
numbers represent the results using the true scatter estimate,
which is regarded as the ground truth (only available for digital
phantom).For the NEMA-like phantom, plots of sphere CR
vs. iteration in fig 4 also show that results from the proposed
method are similar to the MC based results at all iterations.

With our trained CNN it took only about 1 min to generate
all 128 scatter projections for each test case. The time to gen-
erate the corresponding scatter projections with our previous
MC based approach was about 1 hour.



TABLE I
CONTRAST RECOVERY VS. RADIUS: NEMA-LIKE PHANTOM SIMULATION

(UPPER) AND LIVER PHANTOM MEASUREMENT (LOWER)

NEMA phantom
insert radius (mm) 29 19 16 12 10 8 Lung (cold)

residual error
CR (no SC) 0.34 0.30 0.26 0.22 0.21 0.15 0.56
CR (true SC) 0.85 0.80 0.73 0.64 0.67 0.48 0.80
CR (MC [1] SC) 0.77 0.70 0.64 0.59 0.63 0.42 0.61
CR (CNN SC) 0.72 0.73 0.68 0.63 0.65 0.46 0.64
Liver phantom
insert radius (mm) 29 16 8

CR (no SC) 0.41 0.32 0.29
CR (MC [1] SC) 0.88 0.60 0.69
CR (CNN SC) 0.81 0.64 0.75

w/o SC iter 30
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Fig. 3. NEMA-like phantom reconstruction at 30th iteration
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Fig. 4. NEMA-like phantom CR of 6 spheres over iterations

Fig. 5. Liver phantom measurement reconstruction at 30th iteration

IV. DISCUSSION

Compared with reconstruction without scatter correction,
the proposed deep learning based scatter estimation method
substantially improved contrast both in terms of visual image
quality and CR in the Y-90 SPECT phantom studies. Fur-
thermore, image quality and CR corresponding to the new
scatter estimation method showed good agreement with results
corresponding to our previous Monte Carlo based scatter
estimation as well as results corresponding to ‘true’ scatter.
These results are clinically relevant because once the CNN was
trained, the scatter estimates were generated in a fraction of the

time it took to generate scatter estimates for the previous Monte
Carlo based method ( about 1 min for CNN vs. 1-2 hours
for MC). The proposed method can be extended to SPECT
scatter estimation applications other than Y-90 Bremsstrahlung
SPECT by changing the training data. The training and test
data in our study was limited and will be expanded in future
studies. We will also include testing on clinical patient data.
Furthermore, we will investigate training with 3D images
instead of the projection space approach of the current study.
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