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ABSTRACT
Model-Based Iterative Reconstruction (MBIR) methods

for X-ray CT provide improved image quality compared to
conventional techniques like filtered backprojection (FBP),
but their computational burden is undesirably high. Dis-
tributed algorithms have the potential to significantly reduce
reconstruction time, but the communication overhead of ex-
isting methods has been a considerable bottleneck. This
paper proposes a distributed algorithm called Block-Axial
Checkerboarding (BAC) that utilizes the special structure
found in helical CT geometry to reduce inter-node communi-
cation. Preliminary results using a simulated 3D helical CT
scan suggest that the proposed algorithm has the potential to
reduce reconstruction time in multi-node systems, depending
on the balance between compute speed and communication
bandwidth.

Index Terms— Distributed algorithms, Helical X-ray CT

1. INTRODUCTION

MBIR techniques for CT provide benefits such as better im-
age quality and potential dose reduction, compared to conven-
tional techniques like FBP. MBIR finds the image that best
matches the noisy CT measurements in accordance with fac-
tors such as the system physics, measurement statistics and
prior information about the image. For all their benefits, the
major problem with MBIR algorithms is their high computa-
tional costs which have hindered their routine use clinically.

There have been several approaches to accelerate iterative
methods for CT reconstruction [1–3]. Distributed computing
is another effective tool to move beyond the constraints of
working on a single node. Simple distributed techniques for
CT reconstruction assume a shared memory model, where
each node has access to a common image/sinogram space,
thereby simplifying parallelization. Another possible dis-
tributed implementation is one where nodes do not share a
global memory space [4]. That approach requires frequent
synchronization of image and projection data between nodes,
after every subset of projection views. Although reconstruc-
tion time was reduced significantly, the data communica-
tion overhead became a serious bottleneck. One approach
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Fig. 1: Axial partition of x into blocks x1,x2 . . .xL such
that each ray intersects at most 2 adjacent blocks.

to reduce communication is to use block-separable surro-
gates [5], [6].

This paper proposes a novel axial partitioning algorithm
that uses the special structure in helical CT to reduce inter-
node communication. The helical geometry suggests an ax-
ial partition such that every ray intersects at most 2 adjacent
blocks (Fig. 1). This partition makes the problem separable
in half of the image volume, considerably decreasing inter-
node communication. Preliminary experiments are performed
using a simulated helical CT scan of the XCAT phantom. Pre-
dicted wall-clock times are shown for a distributed system
with multiple nodes, and these suggest that the proposed al-
gorithm has the potential to reduce reconstruction time. This
work uses a simple edge-preserving regularizer but could be
extended to CNN-based regularizers.

2. PROBLEM FORMULATION

Consider the X-ray CT reconstruction problem:

x̂ = argmin
x<0

1

2
‖y −Ax‖2W + R(x), (1)

where x̂ ∈ RNp is an estimate of the unknown attenuation
image (x) and y ∈ RNd is the noisy projection data. The
discretized CT forward projection operator [7] is denoted
by A ∈ RNd×Np . W ∈ RNd×Nd is a diagonal statistical
weighting matrix. R(x) is an edge-preserving regularizer,
typically of the form R(x) =

∑N
n=1 ψn ([Cx]n) , where
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C ∈ RN×Np is a stack of finite difference matrices and ψ is
an edge-preserving penalty function.

3. PREVIOUS DISTRIBUTED APPROACH

For the baseline comparison, we use a distributed implemen-
tation without a shared memory space [4]. The image update
uses the OS-RLALM algorithm [8]. This baseline implemen-
tation is referred to as Std-OS-RLALM henceforth. This al-
gorithm distributes forward projection of the image among
multiple nodes (parallelized by projection views). The results
of forward projection are broadcast to every other node (all-
to-all broadcast), since every node needs the whole sinogram
residual to compute the gradient of the data-fit term.

The steps of backprojection, regularization and image up-
date are parallelized across multiple nodes without requiring
data synchronization between each of the steps. Each node
then broadcasts its portion of the updated image to every other
node (all-to-all broadcast) and we move on to the forward pro-
jection of the next subset of views. The method must transfer
a large amount of data (essentially one image-sized variable
and one subset-sized projection variable), for every subset.

The major drawback with this distributed implementation
is the large communication overhead, especially for more
nodes and subsets. To combat these issues, we propose an
algorithm that drastically reduces the communication require-
ments, by partitioning the image volume appropriately.

4. PROPOSED BLOCK AXIAL
CHECKERBOARDING (BAC) ALGORITHM

This section shows that, under appropriate axial partitions of
the image, the cost function is completely separable in half
the image volume. Exploiting this separability, we propose an
algorithm that alternatingly updates half of the image slices
(keeping the other half fixed), and vice versa, that reduces
inter-node communication in a distributed system.

4.1. Partial separability of datafit term

Consider an axial partition of the image volume x into L
blocks, i.e., x = [x1 x2 . . . xL]T , where each block is a
collection of axial slices. Let the forward projection matrix
A be correspondingly partitioned into blocks of columns, as
A = [A1 A2 . . . AL]. Let Pl , {k : [Al xl]k 6= 0}, i.e.,
Pl is the set of all rays that intersect axial block xl.

Using the banded structure of the system matrix A for he-
lical CT reconstruction (shown using A′A in Fig. 2), we axi-
ally partition the image volume such that every ray intersects
at most 2 adjacent blocks. The number of slices in each axial
block depends on factors such as cone-beam angle and field-
of-view. Without loss of generality, let us consider equally
sized axial blocks. Fig. 1 illustrates this partition, and results
in the condition:

0

100

Fig. 2: Image showing the banded structure of the matrix
A′A (yellow lines indicate the axial block boundaries).

Pl ∩ Pm = ∅, ∀l,m : |l −m| > 1. (2)

Claim: Keeping the odd-numbered blocks of x fixed, the
data-fit term in (1) becomes separable in each of the even-
numbered blocks of x.

Proof: Let D(x) =
∑Nd

i=1 hi([Ax]i) represent the data-
fit term, where hi(t) = 1

2 (yi − t)2 for a PWLS formula-
tion. Expanding D(x) in terms of the axial blocks, we obtain
D(x) =

∑Nd

i=1 hi

([∑L
k=1 Akxk

]
i

)
.

Consider the update of an arbitrary even-numbered block
xl. Let x̃l−1 and x̃l+1 be the fixed values of the adjacent im-
age blocks l−1 and l+1. To obtain the terms ofD(x) relevant
to the block xl, we consider only the rays in Pl. Rewriting Pl

as the union of 3 disjoint sets (from (2)), we obtain the block-
specific data-fit term Dl(xl) as

Dl(xl) =
∑

i∈(Pl∩Pl−1)

hi([Alxl + Al−1x̃l−1]i)

+
∑

i∈(Pl\(Pl−1∪Pl+1))

hi([Alxl]i)

+
∑

i∈(Pl∩Pl+1)

hi([Alxl + Al+1x̃l+1]i)

=
∑
i∈Pl

hi([Alxl + b̃l]i), (3)

where b̃l, which we call the data-fit offset, is a fixed vector
given by b̃l = [~0 . . . (Al−1x̃l−1) ~0 (Al+1x̃l+1) . . . ~0]T .
The zeros in b̃l are shown for notational simplicity, and an
efficient implementation transfers only the relevant forward
projection results from the adjacent blocks l− 1 and l+ 1. A
key property of our approach is that it is never necessary to
transfer complete sinogram data between nodes. In the PWLS
case, the datafit term simplifies to

Dl(xl) =
1

2
‖ỹl −Alxl‖2W , l = 2, 4, . . . , L, (4)

where ỹl = y − b̃l. Similarly, the data-fit term is completely
separable in the odd-numbered blocks (when the even blocks
are fixed), and is of a similar form as (4).
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Fig. 3: Alternating updates of odd and even blocks (blocks in
grey are simultaneously updated).

4.2. Partial separability of regularizer term

Using a similar proof as in Section 4.1, we obtain a block-
specific regularizer term Rl(xl) for the update of block l. We
show that Rl(xl) requires the last slice from block l − 1 and
the first slice from block l + 1. Intuitively, this makes sense,
since we are regularizing across block boundaries.

The overall cost function for updating the lth block (when
alternate blocks are kept fixed) is given by

fl(xl) = Dl(xl) +Rl(xl), l = 1, 3, 5, . . . , L− 1,

or l = 2, 4, 6, . . . , L. (5)

4.3. Implementation

Consider a distributed system of S nodes. Each node could
consist of CPU cores or single/multiple GPUs [9, 10] or a
combination of both. As shown in Fig. 3, we axially parti-
tion the image volume into 2S blocks and each node works
on 2 adjacent blocks (one odd and one even block). Using
more nodes S potentially speeds up reconstruction, though
the block size needs to be large enough to satisfy the require-
ment that every ray intersect at most 2 adjacent axial blocks.

LetNo be the number of outer iterations. As shown in Al-
gorithm 1, each node simultaneously updates its odd (even)
block before transferring the relevant offset terms to its adja-
cent node. Each of these updates is performed for multiple
iterations (Ni in Algorithm 1), since the cost function is com-
pletely separable in the alternate blocks (shown in Sections
4.1 and 4.2). This lessens the need for frequent data commu-
nication between nodes, hence reducing time. The update of
each individual block could be performed using any fast itera-
tive algorithm that is suitable for 3D X-ray CT reconstruction.

4.4. Communication overhead

The potential reductions in communication overhead of the
proposed algorithm (BAC) instead of the standard algorithm
(Std-OS-RLALM) are three-fold: (i) Each node transfers data
to only one other node (instead of an all-to-all broadcast). (ii)
Data is transferred only once per outer iteration (instead of
once per subset). (iii) Amount of data transferred is much

Algorithm 1 Block Axial Checkerboarding (BAC)

Initialize x(0) with FBP image.
Divide x(0) into 2S axial blocks; distribute among S nodes
(2 blocks per node).
for n = 0, 1, . . . , No do

for s = 1, 2, . . . , S simultaneously do
Update odd-numbered block x

(n)
l , for l = 2s − 1,

using Ni iterations of any recon algorithm.

Transfer offset term Alx
(n)
l and the first slice of x(n)

l

to node s− 1.
Update even-numbered block x

(n)
l , for l = 2s, using

Ni iterations of any recon algorithm.

Transfer offset term Alx
(n)
l and the last slice of x(n)

l

to node s+ 1.
end for

end for

smaller (only block-specific offset terms for block l). The
cost of the additional forward projections required in BAC
(see Algorithm 1) is offset by the potentially huge reductions
in communication time between nodes.

5. EXPERIMENTAL RESULTS

We simulated a helical CT scan using a 512× 512× 320 vol-
ume of the XCAT phantom [11]. The helical scan consisted
of 5.25 helical turns with a pitch of 63/64, resulting in a sino-
gram of size 444 × 32 × 5166 ([detector columns] × [rows]
× [projection views]). We reconstructed the image volume on
a coarser grid of size 256 × 256 × 320. For the regularizer,
we have used 13 finite differences to include all 26 neighbors
of a voxel. We use the Fair potential function for ψ.

Fig. 4 shows reconstructions of a central slice of the
XCAT phantom. The reference image x∗ was obtained after
running 100 iterations of OS-RLALM (18 subsets) followed
by 1200 iterations of OS-RLALM with 1 subset. The pro-
posed algorithm BAC was run for 6 iterations, and each
odd/even image block was updated using OS-RLALM (5
inner iterations, 18 subsets).

Fig. 5(a) shows the convergence plot vs. equits. The
convergence metric is root mean square difference (RMSD)

computed as
√

1

|Ω|
∑

i∈Ω |x
(k)
i − x∗i |2, where Ω is a cylin-

drical region-of-interest. One equit corresponds to one com-
plete forward and backprojection, and using equits ensures
a fair comparison between the competing algorithms. This
plot was generated using two nodes (S = 2), each with a sin-
gle TitanX (Pascal) GPU. To see the potential benefits in a
realistic distributed system, we simulate the predicted wall
clock times for a 4-node system, each with a single GPU (Fig.
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Fig. 4: Reconstruction of central transaxial slice of XCAT phantom. Images are displayed in HU (modified so that air is 0).
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Fig. 5: Convergence plots (a) vs. equit and (b) vs. predicted wall clock time. (c) Coronal view of the BAC reconstructed image
and its absolute difference with the reference image x∗ (yellow ticks indicate axial block boundaries).

5(b)). We assume an ethernet connection between the nodes
(with a maximum bandwidth of 10Gbps), and we extrapo-
late forward/backprojection times from a single GPU. As ex-
pected, Std-OS-RLALM requires fewer equits than BAC to
reach a lower RMSD value; however, the huge communica-
tion overhead of Std-OS-RLALM suggests that the predicted
recon time would be higher than BAC (see Fig. 5(b)). The
improvement in recon time is predicted to be much greater
when using more nodes and subsets.

6. CONCLUSION

This paper proposes a novel partitioning algorithm that uti-
lizes the special structure found in helical CT to reduce fre-
quent data communication between the nodes in a distributed
system. Preliminary predicted wall-clock times suggest that
the proposed BAC algorithm could potentially be faster than
the standard Std-OS-RLALM approach. We observe neg-
ligible boundary artefacts at the block boundaries (see Fig.
5(c)), which could be further reduced using dithering [6]. Im-
plementation on a real distributed multi-node platform is re-
quired as future work.
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