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 Abstract— CT images are often affected by beam-

hardening artifacts due to the polychromatic nature of the X-

ray spectra. These artifacts appear in the image as cupping in 

homogeneous areas and streaks between dense parts in 

heterogeneous samples.  

This paper proposes a new statistical reconstruction method 

for X-ray CT based on Poisson statistics, taking into account 

the non-linearities caused by beam hardening. To avoid 

needing knowledge of the X-ray spectrum, the method obtains 

the 2D beam-hardening function using information provided 

by the acquired data itself. 

Evaluation using simulations showed beam hardening 

artifact reductions similar to those achieved with conventional 

post-processing techniques while avoiding noise and artifacts 

in low-dose studies. 

Index Terms—Beam-hardening, CT, artifacts, penalized-

likelihood, streaks, polychromatic. 

INTRODUCTION 

The beam hardening effect in computed tomography derives 

from the polychromatic nature of the radiation produced by 

X-ray tubes. Due to the energy dependence of mass 

attenuation coefficients, low energy photons are preferably 

absorbed, causing a shift of the mean energy of the X-ray 

beam to higher values. This effect leads to two main 

artifacts in uncorrected reconstructed images: cupping in 

homogeneous regions and streaks between dense areas in 

heterogeneous regions [1]. 

Several strategies can be found in the literature to 

compensate for this effect. Physical filters are generally 

used to pre-harden the beam before reaching the sample, but 

this is not enough to remove the artifacts. Another method 

implemented in most commercial scanners is the water-
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linearization, based on a prior calibration with a water-

equivalent phantom. This method models the object as 

homogeneous and corrects only cupping artifact [2]. To 

correct also streaks, Nalcioglu et al. [3] proposed a method 

that requires knowledge of the spectrum, the linear 

attenuation coefficients and the thickness of soft tissue and 

bone traversed estimated by means of a preliminary 

reconstruction. Joseph et al. [4] proposed a similar idea 

modeling the corrected data with a second-order polynomial 

dependent on the bone traversed thickness. However, the 

optimum parameters for this model could be exactly 

obtained only with a complete characterization of the 

spectrum. This need of knowledge of the spectra was 

avoided in [5, 6], also based on a linear combination of 

basis images to correct streaks. The coefficients of this 

linear combination are obtained iteratively maximizing the 

flatness of the soft tissue areas, which could reduce the soft-

tissue contrast. Cupping correction is achieved using the 

water-linearization method, which needs a calibration step. 

We recently proposed two new methods extending the 

water-linearization to a 2D linearization [7, 8]. However, 

they require a good bone and soft tissue segmentation which 

may hinder their use in low-dose studies. 

To deal with low-dose studies, Elbrakri et al. presented a 

statistical method that requires knowledge of the spectrum 

[9, 10]. This is avoided in [11, 12] with a simplified 

statistical algorithm that parametrizes the beam-hardening 

function following the model proposed by Joseph and Spital 

[4]. 

This paper presents a variation of [12] that replaces the 

approximation functions with the real measured line 

integrals of bone and soft tissue of the sample as proposed 

in [8]. 

MATERIALS AND METHODS 

A. Forward model 

We model the measurements as independently distributed 

Poisson random variables [13] contaminated by extra 

background counts, primarily scatter: 

𝑌𝑖  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 { 𝑌𝑖  }, 𝑖 = 1, … , 𝑁         (1) 

with 

 𝑌𝑖 = ∫ 𝐼𝑖(𝜀)𝑒
− ∫ 𝜇(𝜀)𝑑𝑙𝐿𝑖 𝑑𝜀 + 𝑟𝑖            (2) 

where 𝜇(𝜀) is the attenuation coefficient at each energy 𝜀, 

the integral in the exponent is taken over the line Li 
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followed by the ray, and 𝐼𝑖(𝜀) is the incident intensity and 

the term 𝑟𝑖 accounts for mean scatter and mean other 

background signals for the i-th ray. 

Following [4, 14] we model the attenuation coefficient in 

Eq. 2 at each pixel j as: 

𝜇𝑗(𝜀) = ∑ 𝑚𝑎𝑐𝑘(𝜀)𝑓𝑘
𝑗
𝜌𝑗

𝐾
𝑘=1            (3) 

where 𝑚𝑎𝑐𝑘 is the mass attenuation coefficient of the 

material k, 𝜌 the density and 𝑓𝑘
𝑗
 is a unitless fraction that 

describes the contribution of the material k to attenuation in 

the pixel j. We assume K=2, i.e., the object contains only 

soft tissue (ST) and bone (B). The contribution of each 

tissue type to the line integral along the i-th ray is: 

𝑡𝑆𝑇(𝜌) = ∑ 𝑎𝑖𝑗𝑓𝑆𝑇
𝑗

(𝜌𝑗)𝜌𝑗
𝑝
𝑗=1         (4) 

𝑡𝐵(𝜌) = ∑ 𝑎𝑖𝑗𝑓𝐵
𝑗
(𝜌𝑗)𝜌𝑗

𝑝
𝑗=1           (5) 

where 𝑎𝑖𝑗  are the elements of the system matrix. Here we 

allow the unitless fraction (𝑓𝑘
𝑗
 ) to only be 1 or 0, i.e., the 

pixels do not contain mixtures of tissues. Eq. 2 for the 

expected value of the measured data along the path i results 

in: 

𝑌𝑖(𝜌) = ∫ 𝐼𝑖(𝜀)𝑒
− ∫ 𝜇(𝜀)𝑑𝑙𝐿𝑖 𝑑𝜀 + 𝑟𝑖 = 

= 𝐼𝑖𝑒
−𝐹(𝑡𝑆𝑇

𝑖 (𝜌),𝑡𝐵
𝑖 (𝜌))

+ 𝑟𝑖                                (6) 

where 

 𝐼𝑖 ≡ ∫ 𝐼𝑖(𝜀)𝑑𝜀           (7) 

and the beam-hardening function, F, is: 

𝐹(𝑡𝑆𝑇 , 𝑡𝐵) = − log ∫
𝐼(𝜀)

𝐼
𝑒−𝑚𝑎𝑐𝑆𝑇(𝜀)𝑡𝑆𝑇−𝑚𝑎𝑐𝐵(𝜀)𝑡𝐵  𝑑𝜀   (8) 

dropping the dependence on ray i for simplicity. 

B. Beam-Hardening function 

The beam-hardening function 𝐹(𝑡𝑆𝑇 , 𝑡𝐵) could be 

analytically calculated from a known spectrum, but often 

this information is not available. To avoid assuming 

spectrum knowledge, the proposed method determines 

𝐹(𝑡𝑆𝑇 , 𝑡𝐵) experimentally using the acquired data following 

the process outlined in Fig. 1.  

 

Fig. 1. Workflow for the generation of the beam-hardening function. 

First bone and soft-tissue masks are obtained by 

thresholding a preliminary reconstructed image. These two 

masks are then multiplied by the density of each tissue and 

projected, which will be the x and y axis, where x 

corresponds to 𝑡𝑆𝑇 and y corresponds to 𝑡𝐵. The value in the 

original projection will be the z axis, corresponding to 

𝐹(𝑡𝑆𝑇 , 𝑡𝐵). 

The generated 𝐹(𝑡𝑆𝑇 , 𝑡𝐵) will not cover the whole space, 

since a specific acquisition will not have all possible 

combinations of soft tissue and bone (Fig. 2, left). To 

completely characterize the beam-hardening function, we 

“extrapolate” the incomplete function F using a quadratic 

function (Fig. 2, right). 

 

Fig. 2. Measured (left) and extrapolated (right) beam-hardening function. 

C. Cost function 

The negative log-likelihood for independent Poisson 

measurement is: 

𝐿(𝜌) = − ∑ ℎ𝑖 (𝐹(𝑡𝑆𝑇(𝜌), 𝑡𝐵(𝜌)))𝑁
𝑖=1      (9) 

where 

ℎ𝑖(𝑑) = −𝑌𝑖 log(𝐼𝑖𝑒−𝑑 + 𝑟𝑖) + 𝐼𝑖𝑒−𝑑 + 𝑟𝑖   (10) 

Since minimizing 𝐿(𝜌) is generally an ill-posed problem, 

regularization is included by adding a penalty term to 

control how much the object 𝜌 departs from our 

assumptions about image properties. In this work, we use a 

3D roughness penalty function with the convex edge-

preserving Huber potential. The resulting penalized cost 

function is: 

Φ( 𝜌) = 𝐿(𝜌) + 𝛽𝑅(𝜌)      (11) 

where 𝛽 is a scalar that controls the tradeoff between the 

data-fit and penalty terms.  

D. Algorithm 

We derive an iterative algorithm based on separable 

quadratic surrogates using the principles of optimization 

transfer [14], resulting in the following update: 

𝜌𝑛+1 = 𝜌𝑛 − 𝐷−1∇Φ(𝜌𝑛)     (12) 

where D is a diagonal matrix that influences the rate of 

convergence. We originally designed D to ensure that the 

algorithm monotonically decreases the cost function. As in 

[9], in practice we choose the elements of D approximately 

by using the precomputed curvature: 

𝑑𝑗 = (𝑚𝑎𝑐𝑆𝑇
2 (𝜀𝑒𝑓𝑓) + 𝑚𝑎𝑐𝐵

2(𝜀𝑒𝑓𝑓)) ∑ 𝑎𝑖𝑗
𝑁
𝑖=1 ∑ 𝑎𝑖𝑗𝑗 𝑌𝑖  (13) 
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where the effective 𝑚𝑎𝑐(𝜀𝑒𝑓𝑓) values for each tissue are 

approximated using the derivative of beam-hardening 

function at (0,0). 

Artifacts in the preliminary reconstruction may hinder the 

segmentation to obtain the bone and soft-tissue masks, 

resulting in an erroneous beam-hardening function. To 

tackle this problem, new bone and soft-tissue masks are 

obtained from the solution at each iteration and are used to 

recalculate the beam-hardening function. 

EVALUATION 

Preliminary evaluation used simulations of a 2D phantom 

with two cortical bone inserts having density 1.9 gr/cm3, 

one trabecular bone insert with density 1.5 gr/cm3 and one 

adipose-tissue insert with density 0.9 gr/cm3, inside of a 

soft-tissue ellipse with density 1.06 gr/cm3 (Fig. 3).  

 

Fig. 3. Test phantom with two cortical bone inserts (1), one trabecular bone 

insert (2), and one adipose-tissue insert (3) inside of a soft-tissue ellipse 

(4). 

Four polyenergetic X-ray datasets were generated using 

MIRT(http://www.eecs.umich.edu/~fessler/code/index.html) 

with a 50 kVp spectrum and 0.1 mm aluminum filtration, 

typically used in preclinical studies. The number of counts 

per ray were 105 and 106 to simulate low-SNR and high-

SNR scenarios respectively. For each scenario, we obtained 

45 and 180 projections in a span of 180 degrees with a 

matrix size of 256×256 pixels and 0.1×0.1 mm pixel size. 

The data were reconstructed with FBP, with FBP 

corrected by the free calibration method (fCM) proposed in 

[8] and by the proposed statistical algorithm. 

RESULTS 

Fig. 4 shows the segmented soft-tissue mask along 

different iterations for the low-SNR scenario with 45 

projections. The mask in the first iteration has holes due to 

the streaks from beam-hardening effect and low sampling, 

which are removed in subsequent iterations. 

 

Fig. 4. Soft tissue mask in iteration 1 (left), 5 (center) and 15 (right). 

Fig. 5 shows the results for 180 projections. The result of 

FBP corrected with fCM shows a good compensation of 

beam-hardening artifacts but it fails to correct streaks with 

high noise (low SNR scenario), while the proposed method 

results in good quality reconstructions in high-SNR and 

low-SNR scenarios. 

When the number of projection is reduced to 45 (Fig. 6) 

FBP+fCM eliminates the beam hardening artifacts in the 

high-SNR scenario, but the reconstruction is contaminated 

with streaks due to the lack of projections. For the low-SNR 

scenario, FBP+fCM also fails to compensate the streaks due 

to beam-hardening effect, because of the wrong 

segmentation used to create the beam-hardening function. 

The proposed method eliminates the beam hardening and 

the streaks in all cases. 

 

Fig. 5. Results for the 180 projections datasets using FBP (top), FBP + 

fCM (center) and the proposed algorithm (bottom). 

 

Fig. 6. Results for the 45 projections datasets using FBP (top), FBP +fCM 
(center) and the proposed algorithm (bottom). 

CONCLUSIONS 

We present a new statistical reconstruction algorithm that 

includes beam-hardening correction without needing any 

spectrum knowledge or correction parameters optimization.  

The method models the polychromatic effect via a beam-

hardening function determined from the acquired data and a 

segmentation of bone and soft-tissue masks, which are 
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iteratively improved. Results on simulated data show a 

reduction of streaks due to both beam-hardening effect and 

low number of projections. 
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