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Abstract—Many signals of interest are well-approximated by
sparse linear combinations of atomic signals from a dictionary.
Equivalently, they are well-approximated by low-dimensional
subspaces in a union of subspaces generated by the dictionary.
A given sparsity level has an associated union of subspaces
(UoS) generated by sparse combinations of correspondingly many
atoms. When considering a sequence of sparsity levels, we have a
sequence of unions of subspaces (SUoS) of increasing dimension.
This paper considers the problem of learning such an SUoS
from data. While each UoS is combinatorially large with respect
to sparsity level, our learning approach exploits the fact that
sparsity is structured for many signals of interest, i.e., that
certain collections of atoms are more frequently used together
than others. This is known as group sparsity structure and has
been studied extensively when the structure is known a priori. We
consider the setting where the structure is unknown, and we seek
to learn it from training data. We also adapt the subspaces we
obtain to improve representation and parsimony, similar to the
goal of adapting atoms in dictionary learning. We illustrate the
benefits of the learned dictionary-based SUoS for the problem of
denoising; using a more parsimonious and representative SUoS
results in improved recovery of complicated structures and edges.

Index Terms—unions of subspaces, structured sparsity, dictio-
nary learning.

I. INTRODUCTION

In many applications ranging from medical imaging [1] to
multi-band signal processing [2] and genetics [3], to name just
a few, signals of interest are often modeled as sparse linear
combinations of a large (often over-complete) set of dictionary
atoms. Namely, we assume our signals of interest x ∈ Cm

satisfy

min
z:‖z‖0≤k

‖x − Dz‖2 ≤ ε
√

m (1)

where

• D ∈ Cm×n is a dictionary with n unit norm columns
d1, . . . , dn ∈ Cm referred to as atoms

• k is the sparsity level (typically much smaller than n)
• ε is the approximation root mean square error (RMSE)

Any signal that is exactly k-sparse in the dictionary D, i.e.,
that satisfies (1) with ε = 0, lies in the span of the atoms
identified by the support of its k-sparse coefficient vector z.
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Hence, it has often been noted that such signals lie in the
union of

(
n
k

)
subspaces, each of dimension k.

Since the results of [4], [5] showed that it is possible to
efficiently recover these signals from only O(k log n) mea-
surements using `1 optimization, this model has been applied
widely for signal denoising and inverse problems. It has also
been widely recognized that not all

(
n
k

)
possible k-sparse

supports are equally likely, resulting in an extensive literature
on group sparsity or structured sparsity constraints for signal
representation and recovery. Identifying groups corresponds
exactly to selecting a subset in the union of k-dimensional
subspaces (2) and hence this model is also called a structured
union of subspaces [6], [7]. In the vast majority of research,
however, the group structure is assumed known. This paper
attempts to learn group structure from data.

In general, learning which of the combinatorially many
possible supports are most relevant for a given dataset is
challenging. Our key insight is that the lowest-dimensional
models represent the bulk of the signals for some datasets.
Hence, we first learn 1-sparse supports, then 2-sparse supports
and so on, where at each stage we seek to represent only
the data not already well approximated. The training data
associated with each support can then be collected and used
to learn an even lower-dimensional subspace. We can also
discard subspaces associated with only a few signals; doing so
further simplifies the model and increases overall representa-
tion error only slightly. Organizing the remaining subspaces by
dimension yields a sequence of unions of subspaces (SUoS)
of increasing dimension.

This paper proposes an algorithm based on this intuition
for learning a parsimonious and representative SUoS from
data. We demonstrate the benefit of the learned model over
unstructured sparsity by applying it to image denoising.

II. RELATED WORK

Hidden Markov Models for Wavelet coefficients. Moti-
vated by the observation that wavelet coefficients are typically
correlated within and across scales, [8], [9] propose learning
hidden Markov models with tree-structure to capture the
correlations among the coefficients then using them to improve
signal estimation and classification. Capturing these correla-
tions provides rich information about the sparse coefficients
and their relationships. In contrast, our proposed approach
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learns only the structure of supports, but immediately applies
without extension to dictionaries without tree-structure.

Structured Sparsity and Group Lasso. Numerous ap-
plications ranging from multi-band signal processing [2] to
genetics [3] motivated extensive work in the past decade
on both theory and algorithms that exploit known group
structure in supports to improve signal/subspace recovery
from compressive measurements [6], [7], [10]–[12] and clas-
sification [13]. Example structures include non-overlapping
groups [14], overlapping groups [15], [16], tree-structured
groups [17], and even groups with internal sparsity [18]. This
paper is largely inspired by the benefits of capturing structured
sparsity that they demonstrate, but we focus instead on how
to learn unknown structures from data.

Learning the structure for structured sparsity. The au-
thors of [19] propose a statistical model for structured sparsity
and an inference scheme for its hyperparameters. In contrast
to [19] and the works discussed above, our proposed approach
learns new subspaces that need not be generated from atoms
of the dictionary and so may provide more parsimonious
representations. Namely, we focus more on learning arbitrary
sequences of unions of subspaces than on sparsity structure
for a given dictionary. Still, we use sparsity structure to first
cluster the data; incorporating ideas from [19] in that step
would be an interesting direction for future work.

Subspace clustering. Subspace clustering [20] groups data
using a nearest-subspace cost function and can be used to
learn a union of subspaces by simply learning a subspace for
each cluster. Likewise, our proposed approach clusters data
then learns a subspace for each cluster. However, it generally
differs from other subspace clustering approaches by exploit-
ing structured sparsity with respect to an initial dictionary
to select the number of clusters. Additionally, while many
subspace clustering techniques can learn subspaces of different
dimensions, an SUoS may further have higher-dimensional
subspaces that entirely contain lower-dimensional subspaces.
Subspace clustering techniques do not typically learn this type
of structure.

Dictionary learning. Dictionary learning adapts dictionary
atoms to more parsimoniously represent data [21], [22] and our
proposal shares this trait. As with any collection of subspaces,
one can also obtain a learned dictionary from our proposal by
using the subspace basis vectors as atoms and assuming the
corresponding non-overlapping group sparsity. In contrast to
dictionary learning approaches, we first cluster the data and
then learn subspaces for them. A notable consequence is that
the (effective) number of atoms and the sparsity structure are
learned from data.

III. LEARNING A SEQUENCE OF UNIONS OF SUBSPACES

The set of all k-sparse signals in a given dictionary D forms
a union of

(
n
k

)
many k-dimensional subspaces, defined as:

Fk(D) := {Dz : z ∈ Cn, ‖z‖0 ≤ k} =
⋃

I∈Ωk

R(DI) (2)

where R(∙) gives the range of the columns of its input, DI

is a matrix formed from the columns of D indexed by I, and
the union is carried out over the

(
n
k

)
index sets in

Ωk := {I ⊂ {1, . . . , n} : |I| = k}.

Taking all sparsity levels yields a sequence of unions of sub-
spaces (SUoS) F0(D), . . . ,Fn(D) of increasing dimension.
This is distinct from the union of unions; F0(D)∪∙ ∙ ∙∪Fn(D)
is actually just Fn(D) since it contains the rest.

A. Goal: Learn a “parsimonious” SUoS from data

We aim to learn a new sequence of unions of subspaces

U0,U1, . . . ,Um ⊆ Cm (3)

that well-approximate a given collection of training vectors
x1, . . . , xT ∈ Cm. Each Uk is a (potentially empty) union of
Nk many k-dimensional subspaces

Uk :=
Nk⋃

i=1

R(Uk,i) =
Nk⋃

i=1

{Uk,iz : z ∈ Ck} (4)

where the columns of Uk,i ∈ Cm×k span a k-dimensional
subspace. We consider {0} to be a zero-dimensional subspace.

Note that U0 must be either {0} or ∅, and likewise Um must
be either Cm or ∅. Beyond that, however, there are infinitely
many choices for each of U1, . . . ,Um−1 that produce perfect
representation of the training vectors. Two such choices are
always:

U0,U2, . . . ,Um = ∅ U1 =
T⋃

i=1

R(xi) (5)

U0, . . . ,Um−1 = ∅ Um = Cm. (6)

However, (5) is undesirable because it does not generalize
from the data; only scaled training vectors appear in the SUoS.
It is not parsimonious in that U1 contains many subspaces. (6)
has only one subspace but is not parsimonious in that it does
not yield low-dimensional representations of vectors.

We seek low-dimensional subspaces, where each represents
nontrivially many training vectors. This requires balancing the
trade-off between using low-dimensional subspaces and using
subspaces expressive enough to represent diverse data vectors.
Formulating this goal precisely and cleanly is challenging and
ongoing work.

B. Proposal: A dictionary-based SUoS learning algorithm

We propose learning an SUoS U0, . . . ,Um where each sub-
space approximates a subset of the training vectors x1, . . . , xN

identified by their structured sparsity in a dictionary. Given a
dictionary D, approximation tolerances εs, εu and a threshold
number of training vectors τ , the proposed method has the
following steps:

1) Sparsely approximate each training vector xt with the
dictionary D by sparse coding: for t = 1, . . . , T solve

ẑt = argmin
zt∈Cn

‖zt‖0 s.t. ‖xt − Dzt‖2 ≤ εs

√
m. (7)
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Under mild conditions on the dictionary [23], orthogo-
nal matching pursuit (OMP) solves (7) efficiently and
reliably. It solves (7) exactly for orthogonal atoms.

2) Cluster the training vectors by the atoms in their sparse
approximation, i.e., by the supports supp(ẑt).

3) Discard clusters containing fewer than τ training vectors,
obtaining clusters X1, . . . ,XL ⊂ {x1, . . . , xT }.

4) Learn an orthonormal subspace basis U` ∈ Cm×k` for
each cluster X` by minimizing the approximation error

ρ(U`,X`) :=

√
1

|X`|

∑

x∈X`

‖x − U`UT
` x‖2

2 (8)

where k` is the smallest dimension that results in a U`

within the approximation tolerance ρ(U`,X`) ≤ εu
√

m.

We find the dimension k` and associated U` ∈ Cm×k`

via the singular value decomposition by noting that k`

is the smallest value for which

1
√

|X`|

√∑

j>k`

σ2
j (X`) ≤ εu

√
m (9)

where σj(X`) is the jth singular value of the matrix
X` ∈ Cm×|X`| whose columns are the |X`| training
vectors in X`. The columns of U` are simply the first k`

left singular vectors of X` [24].
5) Collect the subspace bases U1, . . . , UL by their dimen-

sions k1, . . . , kL, obtaining the unions of subspaces:

Uk =
⋃

`:k`=k

R(U`) k = 0, . . . ,m. (10)

Steps 1-3 exploit structured sparsity to form clusters of training
signals that we hope lie near low-dimensional subspaces that
are learned in steps 4-5. In this way, the approach combines
learning sparsity structure like [19] with adaptation to the data
like in dictionary learning [21].

Note that the approach automatically chooses how many
subspaces of each dimension to include, and encourages a
parsimonious SUoS with low-dimensional subspaces that all
represent nontrivially many training vectors. Furthermore, the
approach is efficient; the primary sources of computational
cost are sparse coding, which is done efficiently via OMP,
and the singular value decomposition of each cluster.

IV. DENOISING WITH A GENERAL

SEQUENCE OF UNIONS OF SUBSPACES

This section describes how to use an SUoS for denoising.
Denoising a vector y ∈ Cm using (unstructured) sparsity can
be accomplished by solving the sparse coding problem:

ẑ = argmin
z∈Cn

‖z‖0 s.t. ‖y − Dz‖2 ≤ ε
√

m (11)

then returning the “denoised” vector x̂ = Dẑ. We propose
a generalization of this scheme to arbitrary SUoS models as
follows: given an SUoS U0, . . . ,Um solve the minimization

k̂ = min
k

k s.t. min
x∈Uk

‖x − y‖2 ≤ ε
√

m (12)

Fig. 1: Training slice (475 × 835) of the XCAT digital
phantom [25], [26] and a set of randomly selected 4 × 4
patches. The display window for both is [900, 1100] HU.

Fig. 2: Atoms of the 2D orthogonal Haar wavelet dictionary.

to select a dimension then return the denoised vector

x̂ = argmin
x∈Uk̂

‖x − y‖2. (13)

In essence, the scheme is to project y onto the lowest dimen-
sional subspace that approximates it with RMSE within ε.
For the dictionary-generated SUoS F0(D), . . . ,Fn(D), it is
precisely a restatement of the sparsity approach; the subspace
dimension k in (12) corresponds to the sparsity ‖z‖0 in (11).

Thus we have the following simple procedure for denoising
with a general SUoS:

1) Initialize k = 0.
2) Select the subspace basis U among those in Uk that

maximizes the projection length ‖UT y‖2 = ‖UUT y‖2.
3) If ‖y − UUT y‖2 ≤ ε

√
m, return UUT y. Otherwise,

increment k and go back to step 2.
The exhaustive search in step 2 may appear worrisome, but for
parsimonious SUoS we hope to have relatively few subspaces
in each union. Moreover, we hope that most signals are close to
low-dimensional subspaces and can exit early in the algorithm.

Varying ε trades off between model error and noise; larger
choices allow approximation by lower-dimensional subspaces
that further suppress noise but that are also less likely to be
representative. Adapting the dimension like this is desirable
for diverse signal classes such as image patches where some
are nearly constant while others may be highly textured.

V. EXPERIMENTS ON AN X-RAY CT DIGITAL PHANTOM

This section illustrates learning an SUoS for patches of an
axial slice of the XCAT digital phantom [25], [26] then using
it for denoising.

A. Learning an SUoS

We learn an SUoS for 4 × 4 patches extracted from a
475 × 835 slice of the XCAT phantom, shown in Figure 1
with a display window of 900 to 1100 modified Hounsfield
units (HU). Extracting all overlapping 4 × 4 patches yields
T = 392704 training samples in R16, 53444 of which are
not constant. We use 2D orthogonal Haar wavelets (Figure 2)
as the input dictionary D ∈ R16×16 to match the piecewise
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Fig. 3: Test slice (475 × 835) of the XCAT digital phan-
tom [25], [26] on left with a noisy version on right (noise
std. dev. of 20 HU). Display window is [900, 1100] HU.

constant nature of the XCAT phantom, and set the approx-
imation tolerances to εs = εu = 5 HU based on a rough
desired precision. The threshold number of training vectors
τ = 25 is chosen to remove sufficiently rare subspaces; note
that τ/T = 25/392704 ≈ 0.006% of the training data.

Table I shows the number of unique supports obtained at
each sparsity level k after step 3 of the learning algorithm for
both τ = 1 (i.e., no clusters discarded) and τ = 25, in addition
to the number of possible supports,

(
16
k

)
. Discarding small

clusters (τ = 25) discards 2113 patches (approximately 0.5%
of the training data) and reduces the number of unique supports
from 652 to 104, but even before discarding any (τ = 1), there
are already many fewer supports than the 216 = 65536 possi-
ble. The patches are also sparsely representable by the 2D Haar
wavelets overall, with an average of (1/T )

∑T
t=1 ‖zt‖0 = 1.6

nonzero coefficients per patch. However, a nontrivial number
of patches are not easily represented by sparse combinations
of these wavelets, evidenced by the dense supports containing
over eight atoms found both when τ = 1 and when τ = 25.
The second stage of learning finds lower-dimensional subspace
representations for these patches.

Table II shows the number of subspaces obtained at each
dimension after completion of the learning algorithm for both
τ = 1 and τ = 25. As each subspace is formed from a cluster
identified in steps 1–3, there are once again 652 subspaces
when τ = 1 and 104 when τ = 25. Compared with the sparsity
of supports in Table I, however, the dimensions of the final
learned subspaces tend to be significantly smaller. Adapting a
subspace to each cluster allows for low-dimensional subspaces
when the cluster contains signals that are similar but not sparse
in the input dictionary, and seeking an average approximation
error within εu allows for even lower-dimensional subspaces
that only approximate the cluster overall.

The learning algorithm automatically avoids the trivial so-
lutions (5) and (6) by exploiting structured sparsity in the 2D
Haar wavelets to cluster and adapting the subspaces to obtain
104 generally low-dimensional subspaces that all represent
nontrivally many training vectors. Using a laptop with an Intel
Core i5-6300U CPU (2.40 GHz, 2.50 GHz) and 8 GB of RAM,
learning the subspaces from the 392704 patches takes around
15 seconds with unoptimized code written in Julia.

B. Denoising using the learned SUoS

We denoised a 475 × 835 test slice extracted from another
portion of the XCAT phantom that has additive zero-mean

0
5
10
15
20
25

Fig. 4: Absolute error maps in [0, 25] HU range for images de-
noised using unstructured sparse coding (left) and the learned
SUoS (right) with a tolerance of ε = 27 HU.

Fig. 5: Color overlays (zoomed in on right), showing locations
of the regions of interest: edge vicinity (green), spine (red),
their intersection (yellow), and lung (cyan).

Gaussian noise with a standard deviation of 20 HU as shown in
Figure 3. We first denoised all 4×4 patches extracted from the
noisy image and then combined the denoised patches back into
a denoised image, averaging where patches overlap. Figure 4
shows absolute error maps for the denoised images obtained
when patches are denoised by: a) solving (unstructured) sparse
coding (11) with 2D Haar wavelets, or b) using a learned
SUoS. We chose a tolerance of ε = 27 HU for both; it
seemed to produce the best sparse coding performance in our
experiments. Using a laptop with an Intel Core i5-6300U CPU
(2.40 GHz, 2.50 GHz) and 8 GB of RAM, denoising the
475 × 835 test slice takes around 4 seconds for both sparse
coding and the learned SUoS with unoptimized Julia code.

Comparing against the true (noiseless) test slice, sparse
coding obtains an overall RMSE of 5.1 HU and the learned
SUoS obtains a slight improvement to 4.6 HU. However,
edge detail is important for these images, and the error maps
reveal that the learned SUoS generally recovers edges more
accurately, especially around the spine. To investigate further,
we consider four regions of interest (ROI) shown in Figure 5:
a) an edge ROI obtained by dilating the edge map provided by
a Canny edge detector, b) a spine ROI, c) their intersection,
and d) a lung ROI. The RMSE’s (in HU) on all ROI’s are:

Edge Spine Intersection Lung
Sparse coding 8.6 8.5 11.1 3.6
Learned SUoS 7.5 6.1 7.5 3.6

There is practically no improvement in the lung ROI, where
the image is constant and the two models provide equally
parsimonious representations. However, the learned SUoS
better recovers detailed regions, most significantly seen in the
intersection ROI, i.e., around edges in the spine.

Choosing ε can be a challenge in practice. Denoising again
but with a larger tolerance ε = 50 HU yields error maps shown
in Figure 6 and the following ROI RMSE’s (in HU):
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TABLE I: Number of unique supports obtained at each sparsity level from XCAT phantom patches (εs = 5 HU).

Sparsity 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total

τ = 1 1 1 7 10 11 15 29 50 67 89 98 101 63 74 32 4 0 652
τ = 25 1 1 2 4 1 0 8 11 11 16 6 16 11 10 2 4 0 104

# possible 1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1 65536

TABLE II: Number of subspaces learned at each dimension from XCAT phantom patches (εs = εu = 5 HU).

Dimension 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total

τ = 1 1 291 106 79 40 49 22 16 10 11 13 8 4 0 2 0 0 652
τ = 25 1 1 11 13 10 15 11 4 6 11 7 8 4 0 2 0 0 104
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Fig. 6: Absolute error maps in [0, 25] HU range for images de-
noised using unstructured sparse coding (left) and the learned
SUoS (right) with a larger tolerance of ε = 50 HU.

Edge Spine Intersection Lung
Sparse coding 10.7 12.7 16.9 3.4
Learned SUoS 8.4 7.0 8.9 3.4

Since the learned SUoS captures more of the structure, it is
significantly more robust to choosing ε too large.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a method for learning a dictionary-
based sequence of unions of subspaces (SUoS) and showed
the benefits of learning such a model for image denoising.
Interesting avenues of future work include understanding how
to choose the approximation tolerances and threshold number
of atoms in learning as well as understanding the impact of
the dictionary used (e.g., if it was learned and overcomplete).
Developing a precise and clean formulation of the learning
objective is also an interesting and important open problem.
A final avenue of future work is the application of this model
to inverse problems such as image reconstruction.
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