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ABSTRACT

Sparsity-based techniques have yielded promising results
for dynamic MRI (dMRI) reconstruction. Data-driven met-
hods involving dictionary learning have become increasingly
popular, but they involve expensive computation and me-
mory requirements. We propose a framework for online or
time-sequential data-driven reconstruction of dynamic MRI
sequences from k-t space measurements recorded by one or
more receive coils. The spatiotemporal patches of the under-
lying image sequence are modeled as sparse in a DIctioNary
with lOw-ranK AToms (DINO-KAT), and the proposed met-
hod estimates the dictionary, sparse coefficients, and images
sequentially and efficiently from the time series of MRI me-
asurements. Our experiments demonstrate the promising
performance of our schemes for online dMRI reconstruction
from limited data.

Index Terms— Sparse representations, dictionary lear-
ning, structured models, low-rank models, inverse problems,
online algorithms, machine learning.

1. INTRODUCTION

Magnetic resonance imaging (MRI) is a relatively slow ima-
ging modality because the measurements, which are samples
in k-space or Fourier space of the object, are acquired se-
quentially. There has been much interest in accelerating MRI
acquisition by sampling fewer (a.k.a. compressed sensing
(CS)) k-space samples. Methods to reconstruct MR images
from limited measurements typically assume that the image
is sparse in some transform domain or dictionary [1] and
optimize problems with sparsity (e.g., `0 or `1) regularizers.

Dynamic MRI (dMRI) data are inherently or naturally
undersampled because the object is changing as the data is
collected. Various techniques have been proposed for recon-
structing dynamic MR image sequences from limited (rand-
omly sampled) k-t space measurements [2–4]. Such met-
hods may achieve improved temporal (or spatial) resolution
by using more explicit signal models rather than conventional
k-space data sharing (where data is pooled in time to make
sets of k-space data such as in the form of a Casorati ma-
trix [5], which appears to have sufficient samples), but often
at the price of increased computation.

While sparse signal models have been popular [2], alter-
native models have also been studied for dynamic MRI re-
construction in recent years including low-rank models [5–9].
The popular L+S method [4, 10] models the image sequence
as the sum of a low-rank (L) and a sparse (S) component, and
jointly estimates the components from k-t space data. The S
component may be directly sparse or sparse in a known trans-
form or dictionary. There has also been interest in dictionary
learning-based approaches for dMRI reconstruction [11–13],
which tend to often involve expensive computation or me-
mory use.

In very recent work [14], we presented a framework for
online or time-sequential adaptive reconstruction of dynamic
(video) data. Here, we investigate the online adaptive recon-
struction of dMRI image sequences from limited k-t space
measurements. The spatiotemporal patches of the underlying
image sequence are modeled as sparse in a (a priori unknown)
DIctioNary with lOw-ranK AToms (DINO-KAT). The dicti-
onary, sparse codes, and images are jointly and sequentially
estimated from the sequentially processed k-t space data. This
data-driven online approach requires only a portion of the data
in memory at a time, greatly reducing memory and compu-
tation demands versus conventional iterative methods. The
adaptive learning of DINO-KAT also leads to lower recon-
struction errors than using an online approach with a fixed
DCT dictionary.

2. PROBLEM FORMULATION AND
ONLINE ALGORITHM

This section briefly presents the problem formulation and al-
gorithm for online adaptive dMRI reconstruction (cf. [14]).
The next section presents numerical experimental results and
comparisons.

2.1. Data-Driven Online Reconstruction Problem

Here, we present the formulation for online dMRI recon-
struction using a dictionary learning regularizer. Let xt

denote the vectorized version of the 3D array obtained by
temporally stacking a small number of J consecutive 2D fra-
mes or images. The sequence {xt} is obtained via a sliding
window (over time) strategy. The following DINO-KAT-
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based image reconstruction problem is solved for each time
index t (e.g., t = 1, 2, etc.) to estimate each xt sequentially:

(P1)
{
x̂t, D̂t, Ẑt

}
= argmin

xt,Dt,Zt

1

2Kt

∥∥Atxt − yt∥∥2
2

+
λS
Kt

t∑
j=1

ρt−j

(
M∑
l=1

∥∥∥Plxj −Dtzjl

∥∥∥2
2
+ λ2Z

∥∥Zj∥∥
0

)
s.t.

∥∥ztl∥∥∞ ≤ L, rank
(
R(dti)

)
≤ r,

∥∥dti∥∥2 = 1 ∀ i, l,

Zj = Ẑj , xj = x̂j , j < t.

Here, At is the sensing or measurement operator for the fra-
mes in xt, vector yt denotes measurements, and j indexes
time. For example, in parallel imaging with multiple recei-
ver coils, the measurement operator performs frame-by-frame
multiplication by coil sensitivities (i.e., SENSE) followed by
(undersampled) Fourier encoding. Operator Pl extracts a vec-
torized spatiotemporal (3D) patch containing n pixels from
xt. The patches are modeled as sparse in an unknown, adap-
tive dictionary Dt ∈ Cn×m (with columns dti), and ztl ∈ Cm
denotes the coefficients for Plxt (i.e., Plxt ≈ Dtztl ). Matrix
Zt has ztl as its columns for l = 1, . . . ,M .

The parameter λS ≥ 0 controls the overall regularization
strength in (P1), and λZ ≥ 0 controls overall sparsity of ma-
trix Zt, where ‖Zt‖0 counts the total number of non-zeros
in Zt. The operator R(·) reshapes dictionary columns into
space-time matrices, which are constrained to have rank at
most r > 0. Spatiotemporal patches have correlations along
time and are well represented in a DINO-KAT model [13].
The `∞ constraints prevent pathologies that could theoreti-
cally arise (e.g. unbounded algorithm iterates) due to the non-
coercive objective [13]. In practice, L is set very large, and
the constraints are typically inactive.

For each t, we only solve for the latest array xt and coeffi-
cients Zt in (P1), and previous (older) arrays and coefficients
are held fixed, but we adaptively learn Dt using all the pa-
tches extracted from the entire sequence

{
xj
}t
j=1

of 3D ar-
rays. Although Dt is estimated using past information, the
proposed algorithm in Section 2.2 does not store this informa-
tion explicitly; rather, it maintains some sequentially updated
(small) matrices to perform the updates. The (exponential)
forgetting factor ρt−j with 0 < ρ < 1 in (P1) diminishes the
influence of old data, and Kt =

∑t
j=1 ρ

t−j is a normaliza-
tion constant. The individual frames may occur in multiple
(overlapping) windows or arrays xt. In such cases, we weight
the instantaneous estimates from these windows according to
the forgetting factors to yield the final frame estimates.

2.2. Algorithm

For each t, our algorithm for (P1) uses a warm start for the
dictionary (the previous estimate, D̂t−1), sparse codes, and
for frames that were estimated in neighboring windows. The
algorithm alternates a few times between updating (Dt, Zt)

(the dictionary learning step) and xt (the image update step).
We describe these updates in the following.

Minimizing (P1) with respect to (Dt, Zt), we set Ct =
(Zt)H to yield:

(P2) min
Dt,Ct

t∑
j=1

ρt−j
∥∥P j −Dt(Cj)H

∥∥2
F
+ λ2Z

∥∥Ct∥∥
0

s.t.
∥∥cti∥∥∞ ≤ L, rank

(
R(dti)

)
≤ r,

∥∥dti∥∥2 = 1 ∀ i,

where P j is a matrix with columns Plxj (1 ≤ l ≤ M ), and
cti denotes the ith column of Ct.

Similar to recent work [13], we use a block coordinate
descent approach to update cti (i.e., minimize with respect to
cti keeping the other variables fixed) followed by dti in (P2),
and cycle over all such columns (all i). The exact solution for
cti (assuming L > λZ) involves truncated hard-thresholding,
and takes the form [13]:

ĉti = min
(∣∣HλZ

(
(Eti )

Hdti
)∣∣ , L1M) � ej∠ (Et

i )
Hdti . (1)

Here, Eti , P t −
∑
k 6=i d

t
k(c

t
k)
H , HλZ

(·) sets vector en-
tries with magnitude < λZ to zero, 1M is a length-M vector
of ones, “�" denotes element-wise multiplication, and ej∠·

computes element-wise phase. The solution is based only
on the most recent data from (time t) and variable estimates,
and is computed cheaply using sparse multiplications (i.e.,
(Eti )

Hdti = (P t)Hdti − Ct(Dt)Hdti + cti).
The solution for dti (in (P2)) involves sparse multiplica-

tions and a singular value decomposition truncated to rank-r
and appropriately normalized [13]. This update makes use
of all past patches and sparse coefficients; however, we do
not need to explicitly store this past information, rather we
recursively (over time) accumulate P tCt and (Ct)HCt re-
spectively with appropriate forgetting factors into two (small)
matrices that we use to compute the optimal dti (cf. [14]).

Minimizing (P1) with respect to xt yields the simple least
squares problem:

(P3) min
xt

1

2

∥∥Atxt − yt∥∥2
2
+ λS

M∑
l=1

∥∥Plxt −Dtztl
∥∥2
2
. (2)

For single-coil Cartesian MRI, the solution can be obtained
using patch-based operations and FFTs [15]. For multiple coil
MRI, we use a few iterations of the proximal gradient scheme
for (P3) [13, 16, 17].

For each time t, with m ∝ n, the computations in the
above online algorithm are dominated by matrix-vector mul-
tiplications, and scale as O(n2M). The memory or storage
cost scales as O(nM) (assuming J � n) for storing (only)
image patches at time t. Since the number of such patches
is typically much smaller than for conventional batch proces-
sing algorithms, the online algorithm has a modest memory
cost.
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Undersampling 4x 8x 12x 16x 20x 24x

NRMSE (Online DINO-KAT) % 10.2 12.9 14.8 16.6 18.3 18.1

NRMSE (Online DCT) % 10.8 13.7 15.8 18.3 20.7 20.8

NRMSE (L+S) % 11.0 13.9 16.1 18.5 21.5 22.5

Gain over Online DCT (dB) 0.5 0.5 0.6 0.8 1.1 1.2

Gain over L+S (dB) 0.7 0.6 0.7 0.9 1.4 1.9

Table 1. NRMSE values as percentages for the cardiac perfu-
sion data for the proposed online DINO-KAT learning-driven
method, the online scheme with fixed DCT dictionary, and the
L+S method. Results are shown for several undersampling
factors with Cartesian sampling. The NRMSE gain (in dB)
achieved by the proposed online DINO-KAT learning-driven
method over the other methods is also shown.

Undersampling 5x 6x 7x 9x 14x 27x

NRMSE (Online DINO-KAT) % 9.0 9.7 11.0 12.4 15.4 20.9

NRMSE (Online DCT) % 9.5 10.2 11.5 13.2 16.4 22.5

NRMSE (L+S) % 11.9 13.0 14.4 16.6 20.0 25.9

Gain over Online DCT (dB) 0.5 0.4 0.4 0.5 0.5 0.6

Gain over L+S (dB) 2.4 2.5 2.3 2.5 2.3 1.9

Table 2. NRMSE values as percentages for the PINCAT data
for the proposed online DINO-KAT learning-driven method,
the online scheme with fixed DCT dictionary, and the L+S
method. Results are shown for several undersampling fac-
tors with pseudo-radial sampling. The NRMSE gain (in dB)
achieved by the proposed online DINO-KAT learning-driven
method over the other methods is also shown.

3. NUMERICAL EXPERIMENTS

Here, we reconstruct dMRI data from limited measurements
using the proposed online reconstruction scheme. We work
with the multi-coil (12-element coil array) cardiac perfusion
data [4] and the PINCAT data [11, 18] from prior works. For
the cardiac perfusion data, we retrospectively undersampled
the k-t space using variable-density random Cartesian unders-
ampling (with a different undersampling pattern for each time
frame), and for the PINCAT data we used pseudo-radial sam-
pling (with a random rotation of radial lines between frames).
We obtained reconstructions at various undersampling factors
using the L+S method [4], the proposed online DINO-KAT
learning-driven method (r = 1), and the proposed online
scheme with a fixed DCT dictionary.

For the online schemes, we used 8×8×5 patches, ρ = 0.9,
J = 5 frames per window, a temporal window stride of 1
frame, and 320 × 320 dictionaries with atoms reshaped into
64 × 5 (space-time) matrices. We ran the online scheme for
each t for 10 outer iterations (we used 50 outer iterations
for the first batch of 5 frames), with 1 and 10 inner itera-
tions in the dictionary learning and image update steps, re-
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Fig. 1. Two representative frames from a reference (fully
sampled) reconstruction of the cardiac perfusion data along
with the corresponding frames from the online DINO-KAT
learning-based reconstruction from 12x undersampled data
(Cartesian sampling). The right three columns depict the cor-
responding reconstruction error maps (w.r.t. reference) for the
online DINO-KAT learning-driven method, the online met-
hod with fixed DCT dictionary, and the L+S method, respecti-
vely.

spectively. The dictionary and image frames were not up-
dated during the first 3 outer iterations to allow the sparse
coefficients to adapt to new patches. The regularization weig-
hts for the online schemes were obtained by sweeping over a
range of values and selecting values that achieved good recon-
struction quality at intermediate undersampling factors. We
measured the dMRI reconstruction quality using the norma-
lized root mean square error (NRMSE) metric that is com-
puted as ‖frecon − fref‖2 / ‖fref‖2, where fref is a reference
reconstruction (from “fully sampled" data), and frecon is the
reconstruction from undersampled data. The online schemes
were initialized in the first batch with a 320× 320 DCT dicti-
onary for D, and the sparse coefficients were initialized with
zero. New frames (those not appearing in the preceding win-
dow) were initialized by performing zeroth-order interpola-
tion at non-sampled k-t space locations (by inserting the nea-
rest non-zero sampled or reconstructed entry along time) and
then backpropagating the filled k-t space to image space by
pre-multiplying with the AH corresponding to fully sampled
data.

For the L+S method, we used the publicly available MAT-
LAB implementation [19] with a temporal Fourier transform
as the sparsifying transform for the S component. We ran the
method for 250 iterations. The remaining parameters for L+S
were also selected by sweeping over a range of values and
selecting values that achieved good reconstruction quality at
intermediate undersampling factors.

Tables 1 and 2 show the reconstruction NRMSE values
obtained with the proposed dictionary learning-based online
scheme and L+S, along with NRMSE values for the online
scheme with a fixed DCT dictionary. The online data-driven
approach clearly outperforms the others at various undersam-
pling factors for both the cardiac perfusion data and PINCAT
data. Compared to the L+S method [4] that stores and acces-
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Reference Online DINO-KAT Online DINO-KAT Online (DCT) L+S

F
ra

m
e
 1

7
F

ra
m

e
 4

4

0

0.05

0.1

0.15

0.2

0.25

Fig. 2. Two representative frames from a reference (fully
sampled) reconstruction of the PINCAT data along with cor-
responding frames from the online DINO-KAT learning-
driven reconstruction from 9x undersampled data (pseudo-
radial sampling). The right three columns show the corre-
sponding reconstruction error maps (w.r.t. reference) for the
online DINO-KAT learning-driven method, the online met-
hod with fixed DCT dictionary, and the L+S method, respecti-
vely.
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Fig. 3. Per-frame NRMSE values (in percentages) for the L+S
method, the online DINO-KAT learning-driven method, and
the online method with fixed DCT dictionary, respectively, for
the PINCAT data with 5x undersampling (pseudo-radial).

ses all the k-t space data and images in memory during recon-
struction, the online scheme only processes/stores data cor-
responding to 5 frames (in xt) at any time along with some
small (accumulated) matrices. As such, it is well-suited for
processing large-scale or streaming data.

Figs. 1 and 2 show reconstructed frames and recon-
struction error maps (magnitudes displayed) that illustrate
the reduced artifacts achieved with the proposed data-driven
scheme. Fig. 3 shows that the online DINO-KAT scheme
typically provides better frame-by-frame NRMSE compared
to the other methods. Fig. 4 shows time series (y − t) recon-
struction plots for the various methods for the PINCAT data.
The L+S and online DCT-based methods show line-like or
additional smoothing artifacts that are not produced by the
proposed online dictionary learning-based scheme.

Reference Online DINO-KAT Online (DCT) L+S

Fig. 4. Temporal (y − t) profiles of a spatial vertical line
cross section are shown for the reference PINCAT recon-
struction, the online DINO-KAT learning-driven method, the
online method with fixed DCT dictionary, and the L+S met-
hod for 7x undersampling and pseudo-radial sampling.

4. CONCLUSIONS

We presented a framework for online reconstruction of dyna-
mic MR image sequences by adaptively learning dictionaries
with low-rank (reshaped) atoms from sequentially processed
k-t space data. The proposed method provides promising
performance for dMRI reconstruction from limited data. This
work provided an initial exploration of online data-driven
methodologies for medical imaging. We plan to explore the
promise of the proposed framework in applications such as
interventional imaging in future work.
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