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ABSTRACT

Estimating the main magnetic field inhomogeneity is im-
portant for many magnetic resonance imaging (MRI) tech-
niques. Regularized estimation methods can provide accurate
estimates that intrinsically avoid phase wrapping, account for
the chemical shift due to fat, and reduce noise. However,
these methods require minimizing nonconvex cost functions
and existing algorithms are undesirably slow or do not scale
to realistic 3D datasets due to memory limitations. This pa-
per proposes a new algorithm that overcomes these limita-
tions. The algorithm adapts the nonlinear conjugate gradient
method by incorporating an monotonic line search and ef-
ficient iteration-dependent preconditioning. Experiments on
multi-echo field map estimation show that our algorithm is
competitive with state-of-the-art methods in 2D, and scale
successfully to 3D datasets, where current fast methods fail
due to memory limitations.

Index Terms— Field inhomogeneity, field map estima-
tion, water-fat imaging, nonlinear conjugate gradient method

1. INTRODUCTION

Inhomogeneities within the main magnetic field (B0) can
degrade magnetic resonance imaging (MRI) techniques that
use long readout times (e.g., spiral trajectories or echo planar
imaging). Field inhomogeneity is also a nuisance parame-
ter in chemical shift based water-fat imaging techniques [1].
However, accurate estimates of the off-resonance frequency
induced by the field inhomogeneity at each voxel (i.e., a field
map) can mitigate both of these issues.

Numerous methods have been proposed to estimate field
maps. One approach is to acquire multiple scans at different
echo times and then estimate the field inhomogeneity from
the phase information in the resulting images [1]. Alterna-
tively, regularized estimation methods such as [2, 3] estimate
a smooth field map from multiple acquisition images while
intrinsically accounting for phase wrapping. The challenge
with these regularized methods is that they use nonconvex
cost functions that require iterative minimization techniques.

An existing minimization technique for regularized field
map estimation uses optimization transfer to create a sepa-
rable quadratic surrogate (SQS) [2]. However, that method
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takes many iterations, and subsequently a long time, to reach
a useful solution. This large computational cost impedes the
adoption of these estimators, especially for 3D datasets.

This paper presents a new method that significantly de-
creases the computation time (or memory demands) of reg-
ularized field map estimators. The new method builds off a
recent approach [4] that uses Huber’s algorithm for quadratic
surrogates [5] by exploiting the structure of the Hessian ma-
trix of the quadratic surrogate function. In [4], a Cholesky
decomposition provides fast inversion of the Hessian matrix
by exploiting its banded structure that arises from finite dif-
ference regularization. However, this approach does not scale
to full 3D volumes with 3D regularization because of the in-
crease in size and bandwidth of the Hessian matrix.

Instead, this paper adapts the nonlinear conjugate gradient
algorithm combined with a monotonic line search approach
and efficiently obtained iteration-dependent preconditioners.
In particular, we derive an effective preconditioner from an
incomplete Cholesky decomposition of an approximation of
the Hessian. Results with simulated and in vivo data demon-
strate that the new algorithm is competitive with the method
in [4] on smaller datasets, and scales to 3D datasets where the
approach of [4] is infeasible due to memory limitations. In
brief, the proposed algorithm enables fast and memory effi-
cient regularized field map estimates, even for 3D volumes.

2. PROBLEM FORMULATION

Let y`,j ∈ C denote the jth voxel in the reconstructed image
of the `th scan, for j = 1, . . . , N and ` = 1, . . . , L. We model
the effect of field inhomogeneity as [2]:

y`,j = eiωjt`xj + ε`,j (1)

where xj ∈ C denotes the unknown magnetization at the jth
voxel, ωj ∈ R denotes the field map value at voxel j, t` de-
notes the echo time shift of the `th scan, and ε`,j ∈ C denotes
the complex noise. For simplicity, this paper neglects the ef-
fect ofR∗2 decay; however, one can incorporate that effect into
the model (1) and the derivations easily [2].

Assuming the noise ε`,j is zero-mean, white complex
Gaussian, the joint maximum-likelihood (ML) estimates of
the field map vector ω and image vector x are given by

arg min
ω,x

N∑
j=1

L∑
`=1

∣∣y`,j − eiωjt`xj
∣∣2 . (2)
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For a given field map ω, the ML estimate of x from
(2) has an analytic solution. Substituting that solution back
into (2) and simplifying gives the following negative log-
likelihood for multi-echo field map estimation [2]:

ΦF (ω) ,
N∑
j=1

L∑
m=1

L∑
p=1

ϕjmp(ωj) (3)

where, with weighting wm,pj = |ym,jyp,j |2/
∑L
`=1 |y`,j |2:

ϕjmp(ωj) = wm,pj

[
1− cos(ωj(tm − tp) + ∠ymj − ∠yp,j)

]
.

(4)
Field maps tend to be smooth within body tissue [2],

therefore a spatial regularizing term is combined with the
log-likelihood to define a penalized-likelihood (PL) estima-
tor [2]. Furthermore, field map estimates are only needed for
voxels where signal is present, hence we incorporate an esti-
mation mask yielding the final generalized PL cost function:

Ψ(ωs) = Φ(ωs) +
β

2
‖Cωs‖22, (5)

Φ(ωs) ,
∑
j∈Ns

L∑
m=1

L∑
p=1

ϕjmp(ωj),

where ωs ∈ R|Ns| is a vector containing the field map vari-
ables within the estimation mask, Ns is the set of voxels
within the mask, β is a regularization parameter, and C is a
finite differencing matrix that accounts for the mask.

Estimators based on minimizing this cost function provide
accurate field map estimates [2]; however, the cost function is
difficult to minimize due to the nonlinear data-fit terms and
the non-separability of the regularizer. Current minimization
strategies that use separable quadratic surrogate methods that
can take many minutes to converge even for 2D images [2], or
are limited to small data sizes because of memory limitations
[4]. The next section proposes a new minimization strategy
that reduces both the computation time and memory demands.

3. PROPOSED ALGORITHM

We propose a method based on the nonlinear conjugate gra-
dient (NCG) algorithm as applied to the PL cost function (5).
In particular, we adapt the following preconditioned form of
the Polak-Ribiere NCG method:

gn = ∇Ψ(ωns ) (gradient)

pn = P−1gn (precondition)

γn =

{
0, n = 0
〈gn−gn−1,pn〉
〈gn−1,pn−1〉 , n > 0

zn = pn + γnz
n−1 (search direction)

αn = arg min
α

Ψ(ωns + αzn) (step size) (6)

ωn+1
s = ωns + αnz

n (update)

We alter the NCG method by considering two modifications.
First, we derive a monotonic step size line search algorithm
using quadratic surrogates like in [6]. Second, we consider
several preconditioners based on quadratic majorizers.

3.1. Monotonic step size line search

The non-quadratic nature of the cost function (5) prevents di-
rect computation of a step size. Instead, we must consider
iterative line search methods. There are many existing line
search methods capable of determining a “sufficient” step size
[7]. The disadvantage of many of these methods is that they
require multiple costly evaluations of the cost function and
they have parameter values that would have to be carefully
selected for such nonconvex problems. Instead, we follow [6]
and use a line search method based on Huber’s algorithm for
quadratic surrogates [5]. This particular line search method is
guaranteed to monotonically decrease the cost function.

To create the monotonic line search algorithm, we evalu-
ate the original cost function (5) with respect to a scalar step
size variable, α (dropping outer iteration n for brevity):

f(α) = Φ(ωs + αz) +
β

2
‖C(ωs + αz)‖22, (7)

where z ∈ R|Ns| is a search direction. The optimal step size
in (7) corresponds to solving

α∗ = arg min
α

f(α).

However, minimizing f directly is intractable due to the non-
linear data fit term. Instead, we adapt Huber’s method of
quadratic surrogates [5,6] and iteratively minimize f by min-
imizing a sequence of 1-D surrogate functions qk:

α(k+1) = arg min
α

qk(α). (8)

Here the surrogate functions qk are given by

qk(α) , Φ(ωs + α(k)z) + zT∇Φ(ωs + α(k)z)(α− α(k))

+
1

2
d(k)(α− α(k))2 +

β

2
‖C(ωs + αz)‖22, (9)

where d(k) =
∑
j∈Ns

|zj |2d(k)j with

d
(k)
j =

L∑
m=1

L∑
p=1

κjmp

(
sjmp(ωj + α(k)zj)

)
, (10)

and where

κjmp(s) , wm,pj (tm − tp)2
sin(s)

s
, (11)

sjmp(ω) ,
(
ω · (tm − tp) + ∠ymj − ∠yp,j

)
mod π, (12)
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are the optimal Huber’s curvatures [2, 5]. Minimizing the
quadratic (9) yields the following updates:

α(k+1) = α(k) −
∂
∂αf(α(k))

d
(k)
α + βzTCTCz

. (13)

The above choice of surrogate function qk is designed to ma-
jorize f in the sense that qk(α) ≥ f(α), for all α and for all
subiterations k. From this property it can be shown that the
sequence of α(k) monotonically decreases the cost function
(7). Also note that we implement the iterates (13) efficiently
by computing βzTCTCz only once per outer iteration.

3.2. Preconditioning matrices

We also explore several preconditioners to accelerate our
NCG based algorithm. We base our preconditioners on the
following iteration dependent approximation of the Hessian:

Hn , Dn + βCTC

where Dn = diag(d
(Kn)
j ) with Kn denoting the final line

search step in the (n − 1)th iteration of the NCG algorithm.
This approach is more efficient than re-computing the exact
Hessian of the original cost function (5), because we obtain
Hn as a by-product of the line search.

Our first preconditioning matrix restricts Hn to its diag-
onal entries: PD = diag(Hn). Our second preconditioner is
the full Hessian matrix of the quadratic surrogate PH = Hn

which is implemented using sparse Cholesky factorization.
However, the sparse Cholesky factorization is infeasible for
large 3D datasets due to memory demands. Therefore, we
also consider an incomplete Cholesky decomposition [8] as
a preconditioner, which has the form PI = KKT ≈ Hn,
where K is a sparse lower triangular matrix. We note that
the incomplete Cholesky decomposition is substantially less
computationally demanding and memory intensive than a full
Cholesky decomposition, and scales well to large 3D datasets.

4. RESULTS

We performed field map estimation using our NCG with
monotonic line search algorithm with no preconditioner
(NCG-MLS), with the diagonal preconditioner (NCG-MLS-
D), with the Hessian preconditioner based on a Cholesky
decomposition (NCG-MLS-C), and an incomplete Cholesky
decomposition (NCG-MLS-IC). We also compared with the
existing SQS algorithm [2] and quadratic surrogate Huber’s
algorithm [4] (QS-Huber). We used one line search itera-
tion for NCG-MLS, NCG-MLS-D, NCG-MLS-IC, and three
for NCG-MLS-C. These parameter values were determined
empirically in advance and were not further optimized.

We initialized each algorithm using a tightly masked con-
ventional estimate. The conventional method takes the phase
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Fig. 1. Plots of the RMSD in Hz versus time for all of the al-
gorithms evaluated on a simulated 2D dataset. The proposed
family of NCG-MLS algorithms are comparable in computa-
tion time to the state-of-the-art QS-Huber method [4].

difference of the first two acquired images as follows [2]:

ω̂conv
j = ∠ (y1,j

∗y2,j) /t1. (14)

With this initialization we observed all of the algorithms
considered converged to the same solution to within ma-
chine precision in the experiments carried out in this work.
Hence, we compared convergence rates by computing the
root-mean squared difference (RMSD) between the estimate
at each iteration ωns and the mean of the final estimates
from the SQS method and the NCG-MLS method ω̂s, where
RMSD(ωns ) =

√
‖ωns − ω̂s‖22/

√
|Ns|. Comparing against

the mean of two estimates avoids favoring any one algorithm.
We implemented all algorithms in MATLAB and ran the ex-
periments on a PC with a dual 6-core 2.80GHz Intel Xeon
CPU and 32 GB of RAM.

We first tested our algorithms on a partially simulated
multi-echo dataset of a 128× 128 pixel brain image and field
map acquired on a 3T GE scanner (not pictured). The orig-
inal data was collected at two echo times 2 ms apart, from
which we estimated the field map and the brain image, which
we took as ground truth. From the ground truth field map and
brain image we simulated a 3-echo acquisition with relative
echo times t` = 0, 2, 10 ms andR∗2 = 20 s−1. We added com-
plex Gaussian noise to these images so that the SNR ≈ 20 dB.
We used second-order finite differences in the definition of C,
which we found to give improved results over first-order dif-
ferences. We selected the regularization parameter β = 2−3

as it provided the most accurate estimates compared to the
truth (details not shown). Fig. 1 plots RMSD in Hz versus
wall time for all of the evaluated methods. The family of
NCG-MLS methods converged at a rate similar to the QS-
Huber method in this case, with NCG-MLS-C converging the
fastest.

We also investigated an in vivo 3D MRI dataset (64 ×
64 × 40 voxels) collected at two echo times 2.3 ms apart;
see Fig. 2 for nine representative slices. For this dataset, we
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Fig. 2. Representative slices of a 3D brain dataset used in experiments: (left) magnitude image for reference, (middle) initial
field map estimate in Hz, and (right) regularized field map estimate in Hz.
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Fig. 3. Plots of RMSD in Hz versus time for all of the al-
gorithms evaluated on the 3D brain dataset. The QS-Huber
method [4] was infeasible in this setting due to memory limi-
tations.

could not apply the QS-Huber and NCG-MLS-C methods due
to memory limitations, and so do not compare against these
methods. We reused the the same parameter settings as in
the 2D setting, and extended C to include second-order fi-
nite differences in the axial dimension. Fig. 3 shows RMSD
in Hz versus time for all of the evaluated methods. This
case also exhibited similar improvement in the convergence
rates with NCG-MLS over SQS. The preconditioned methods
NCG-MLS-D and NCG-MLS-IC showed modest improve-
ment over NCG-MLS without preconditioning.

5. DISCUSSION AND CONCLUSION

We have presented a efficient method for minimizing the non-
convex cost function associated with regularized field map es-
timation. The method modifies the nonlinear conjugate gra-
dient method by including a monotonic step size line search
algorithm based on a quadratic surrogate. Our fastest algo-
rithms were those that used the additional preconditioning
based on an approximation of the Hessian. These converged

to the same estimate as the existing separable quadratic sur-
rogate method an order of magnitude faster and show similar
convergence speedups on full 3D volumes, where existing fast
methods are infeasible due to memory limitations.
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