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ABSTRACT

MRI parameter quantification has diverse applications,

but likelihood-based methods typically require nonconvex

optimization due to nonlinear signal models. To avoid expen-

sive grid searches used in prior works, we propose to learn

a nonlinear estimator from simulated training examples and

(approximate) kernel ridge regression. As proof of concept,

we apply kernel-based estimation to quantify six parameters

per voxel describing the steady-state magnetization dynamics

of two water compartments from simulated data. In relevant

regions of fast-relaxing compartmental fraction estimates,

kernel estimation achieves comparable mean-squared error as

grid search, with dramatically reduced computation.

1. INTRODUCTION

Quantitative MRI describes a class of problems in experimen-

tal design and parameter estimation that seek to produce pa-

rameter “maps” describing physical processes of interest, e.g.,

relaxation [1], diffusion [2], and myelin water content [3].

Motivated by such widespread applications, this paper de-

scribes a novel method for fast MRI parameter estimation.

Because MR signal models are often complicated non-

linear functions of both desired and nuisance parameters,

likelihood-based estimation requires nonconvex optimization

in general. To seek global optima, several recent works [4–7]

approach estimation via grid search, which requires either

storing or computing on-the-fly a “dictionary” of signal vec-

tors. In these works, the number of estimated parameters is

small, so grid search is suitable. However, for even mod-

erately sized problems, the required number of dictionary

elements renders grid search undesirable or even intractable,

unless one assumes restrictive parameter constraints.

We observe that for many voxel-wise separable MRI pa-

rameter estimation problems, e.g. [4–7], training points are

easily simulated. To address the challenges of likelihood-

based nonlinear estimation, we thus propose to learn an esti-

mator from simulated training examples. Specifically, this pa-

per describes a fast MRI parameter estimation method based
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on kernel ridge regression (KRR). Though popular in the ma-

chine learning community, KRR has not (to our knowledge)

been used before for MRI parameter mapping.

This paper is organized as follows. Section 2 introduces

a general signal model, solves an associated functional op-

timization problem via KRR, and reduces the candidate es-

timator’s computational requirements through an approxima-

tion. Section 3 applies kernel-based estimation to quantify six

parameters arising from models describing the steady-state

magnetization dynamics of two water compartments. Sec-

tion 4 provides brief concluding remarks.

2. METHODS

2.1. MRI Parameter Estimation via Kernel Regression

After image reconstruction, many MRI acquisitions useful for

parameter mapping produce at each voxel position a sequence

of noisy voxel values y ∈ CD, modeled here as

y = s(x,ν) + ǫ, (1)

where x ∈ RL denotes L latent object parameters (e.g., relax-

ation time constants); ν ∈ RK denotes K known object pa-

rameters (e.g., separately acquired and estimated field maps);

s : RL × RK 7→ CD models the noiseless signals that arise

from D datasets; and ǫ ∈ CD is complex Gaussian noise,

assumed to be distributed as CN (0,Σ). Here we seek to

estimate on a per-voxel basis each latent parameter x from

corresponding data sequence y and known parameter ν.

To develop (or train) a non-iterative estimator x̂, we simu-

late many instances of input-output relation (1) and use KRR

to estimate a nonlinear inverse relation. We sample R
L ×

RK×CD and evaluate (1) N times to produce sets of training

inputs {(x1,ν1, ǫ1), . . . , (xN ,νN , ǫN )} and data sequences

{y1, . . . ,yN}. We seek a function ĥ : RQ 7→ RL for

Q := 2D +K and an offset b̂ ∈ RL that together map each

(real) qn := [Re(yn)
T
, Im(yn)

T
,νT

n ]
T, n ∈ {1, . . . , N}, to

an estimate x̂(qn) := ĥ(qn) + b̂ that is “close” to xn:

(
ĥ, b̂

)
∈ arg min

h∈HL

b∈RL

Ψ
(
h,b; {(xn,qn)}

N

1

)
, where (2)
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Ψ(. . . ) =

L∑

l=1

Ψl

(
hl, bl; {(xl,n,qn)}

N

1

)
; (3)

Ψl(. . . ) =
1

N

N∑

n=1

(hl(qn) + bl − xl,n)
2
+ ρl‖hl‖

2

H
. (4)

Here, each hl : RQ 7→ R is a scalar function that maps to

the lth component of the output of h; each bl, xl,n ∈ R are

scalar components of b,x; H is a (reproducing kernel) Hilbert

space (RKHS), whose norm ‖·‖
H

is induced by inner product

〈·, ·〉H : H×H 7→ R; each ρl controls for regularity in hl; and

(·)T denotes vector transpose.

Since (3) is separable in the components of h, it suffices

to consider optimizing each (hl, bl) separately via (4). Re-

markably, a generalization of the Representer Theorem [8],

restated as is relevant here for completeness, reduces (4) to a

finite-dimensional optimization problem:

Theorem 1 (Generalized Representer, [8]). Define k : RQ ×
RQ 7→ R to be the (symmetric positive definite) kernel func-

tion associated with RKHS H, such that reproducing property

hl(q) = 〈hl, k(·,q)〉H holds for all hl ∈ H and q ∈ RQ.

Then any minimizer (ĥl, b̂l) of (4) over H × R admits a rep-

resentation of ĥl of the form

ĥl(·) ≡
N∑

n=1

al,nk(·,qn), (5)

where each al,n ∈ R for n ∈ {1, . . . , N}.

Theorem 1 ensures that any solution to

(âl, b̂l) ∈ arg min
al∈R

N

bl∈R

ρl

∥∥∥∥∥

N∑

n′=1

al,n′k(·,qn′ )

∥∥∥∥∥

2

H

+

1

N

N∑

n=1

(
N∑

n′=1

al,n′k(qn,qn′) + bl − xl,n

)2

(6)

corresponds via (5) to a minimizer of (4) over H × R, where

al := [al,1, . . . , al,N ]T. Fortunately, a solution of (6) exists

uniquely for ρl > 0 and can be expressed as

âl = (MK+NρlIN )
−1

Mxl; (7)

b̂l =
1

N
1T

N (xl −Kâl), (8)

where K ∈ RN×N is the Gram matrix consisting of entries

k(qn,qn′) for n, n′ ∈ {1, . . . , N}; M := IN −
1

N
1N1T

N is

a de-meaning operator; xl := [xl,1, . . . , xl,N ]T; IN ∈ RN×N

is the identity matrix; and 1N ∈ RN is a vector of ones.

In the special case where each ρl ← ρ for fixed ρ > 0,

the scalar estimators
{
x̂l(·) := ĥl(·) + b̂l

}L

1

that arise from

plugging (7) into (5) can be concatenated as

x̂(·)← X

(
1

N
1N +M(KM+NρIN )

−1
k(·)

)
, (9)

where k(·) := [k(·,q1), . . . , k(·,qN )]
T − 1

N
K1N : RQ 7→

RN and X := [x1, . . . ,xN ] = [x1, . . . ,xL]
T ∈ RL×N .

For ρ > 0, estimator (9) minimizes (3) over (H× R)
L

.

However, the utility of (9) depends on the choice of kernel k,

which induces a choice on the RKHS H and thus the func-

tion space (H× R)L over which (2) optimizes. For example,

if k was selected as the canonical dot product k(q,q′) ←
〈q,q′〉RQ := qTq′ (for which RKHS H ← RQ), then (9)

would reduce to affine ridge regression [9], which is opti-

mal over
(
RQ × R

)L
but is unlikely to be useful when signal

model s is nonlinear in x.

Since we expect a useful estimate x̂(q) to depend nonlin-

early (but smoothly) on q in general, we instead use a (sym-

metric, positive definite) k that is likewise nonlinear in its ar-

guments and thus corresponds to a RKHS richer than RQ.

Specifically, we use a Gaussian kernel

k(q,q′)← exp

(
−
1

2
‖q− q′‖

2

Λ−1/2

)
, (10)

where symmetric, positive definite Λ ∈ RQ×Q controls the

length scales in q over which the estimator x̂ smooths.

Interestingly, the RKHS associated with Gaussian kernel

(10) is infinite-dimensional. Thus, Gaussian KRR can be

interpreted as first “lifting” via a nonlinear feature map z :
RQ 7→ H each q into an infinite-dimensional feature z(q) ∈
H, and then performing affine ridge regression on the fea-

tures via dot products of the form k(q,q′)← 〈z(q), z(q′)〉H.

From this perspective, the challenges of nonlinear estimation

via likelihood models are avoided because we select (through

the choice of kernel) characteristics of the nonlinear depen-

dence that we wish to model and need only estimate via (6)

the linear dependence of x̂ on the corresponding features.

2.2. Practical Considerations: Kernel Approximations

In practical problems with even moderately large ambient di-

mension Q, the necessarily large number of training sam-

ples N complicates storage of (dense) Gram matrix K. Us-

ing a kernel approximation can mitigate storage issues. Here

we choose to sample Random (Fourier) Features [10], a re-

cent method for approximating shift-invariants kernels having

form k(q,q′) ≡ k(q− q′). This section briefly reviews [10]

for the purpose of constructing an intuitive and computation-

ally efficient approximation of (9).

The strategy of [10] is to construct independent probabil-

ity distributions pv and ps associated with random v ∈ R
Q

and random s ∈ R as well as a random function (that is pa-

rameterized by q) z̃(·, ·;q) : RQ × R× RQ 7→ R, such that

Ev,s(z̃(v, s;q)z̃(v, s;q
′)) = k(q− q′), (11)

where Ev,s(·) denotes expectation with respect to pvps. If

such a construction exists, one can build approximate feature

maps z̃Z by concatenating evaluations of z̃Z :=
√
2/Zz̃ on Z

6



samples {(v1, s1), . . . ,vZ , sZ} of (v, s) (drawn jointly albeit

independently), to produce approximate feature vectors

z̃Z(q) := [z̃Z(v1, s1;q), . . . , z̃Z(vZ , sZ ;q)]
T

(12)

for any q. Then by the strong law of large numbers,

lim
Z→∞

〈z̃Z (q), z̃Z(q
′)〉RZ

a.s.
→ k(q,q′) ∀q,q′, (13)

which, in conjunction with strong performance guarantees for

finite Z [10], justifies the interpretation of z̃Z as an approxi-

mate (and now finite-dimensional) feature map.

We use the Fourier construction of [10] that assigns

z̃(v, s;q) ← cos
(
2π
(
v
Tq+ s

))
. If s ∼ unif(0, 1), then

Ev,s(z̃(v, s;q)z̃(v, s;q
′)) simplifies to

∫

RQ

cos
(
2πvT(q− q′)

)
pv(v) dv. (14)

For symmetric positive definite k, (14) exists [11] and is the

Fourier transform of pv. Thus, for Gaussian kernel (10),

choosing v ∼ N
(
0,
(
4π2Λ

)−1)
satisfies (11).

Subsequent sampling of v, s and construction via (12) of

Z̃Z := [z̃Z(q1), . . . , z̃Z(qN )] ∈ RZ×N produces for Z ≪
N a low-rank approximation Z̃T

Z Z̃Z of Gram matrix K. Sub-

stituting this approximation into (9) and applying the matrix

inversion lemma [12] yields

x̂(·)←mx +Cxz̃(Cz̃z̃ + ρIZ)
−1

(z̃Z(·)−mz̃), (15)

where mx := 1

N
X1N and mz̃ := 1

N
Z̃Z1N are sample mean

vectors; and Cxz̃ := 1

N
XMZ̃T

Z and Cz̃z̃ := 1

N
Z̃ZMZ̃T

Z are

sample covariance matrices. Estimator (15) is a regularized

variation of the linear minimum mean-squared error estima-

tor on the features, and illustrates that Gaussian KRR via es-

timator (9) is asymptotically (in Z) equivalent to affine ridge

regression after nonlinear, high-dimensional feature mapping.

3. EXPERIMENT

As proof of concept, we apply kernel-based estimation to

quantify parameters describing the magnetization dynam-

ics of multiple water compartments, a challenging applica-

tion of clinical interest, e.g., for myelin water imaging [13].

Specifically, we use a simple model of two non-exchanging

compartments and seek to estimate the associated latent pa-

rameters; more complex models would only add parameters

and thereby increase the need for an alternative to grid search.

Such challenging estimation problems typically require

multiple data acquisitions and thus long scans. To reduce

scan times of classical methods [3], fast steady-state pulse se-

quences were recently proposed for two-compartment param-

eter estimation [14, 15]. We similarly take interest in steady-

state sequences, but modify acquisition details to address pos-

sible concerns of insufficient estimation precision [16].

We begin with two-compartment models of the signals

arising from Spoiled Gradient-Recalled Echo (SPGR) [17]

and Dual-Echo Steady-State (DESS) [18] pulse sequences.

We make appropriate assumptions to reduce model depen-

dencies to seven free parameters per voxel: flip angle spa-

tial variation (due to transmit field inhomogeneity) κ; fast-

relaxing compartmental fraction fF; (spin-lattice, spin-spin)

relaxation time constants for the fast-relaxing (T1,F, T2,F)
and slow-relaxing (T1,S, T2,S) compartments; and a complex

proportionality constant1 m0. We assume prior knowledge

of ν ← κ (which in practice can be estimated from separate

fast acquisitions, e.g. [19]) and collect the remaining L ← 6

latent parameters as x← [fF, T1,F, T2,F, T1,S, T2,S,m0]
T

.

In light of clinical need, we focus on estimating fast-

relaxing fraction fF and tailor our simulation accordingly.

We optimize (by the method of [20]) the flip angles and repe-

tition times of four SPGR and three DESS scans2 for precise

estimation of fF in white matter (WM) and grey matter (GM)

regions of the human brain. We consider the other five la-

tent parameters to be nuisance parameters and thus do not

evaluate the performance of their estimators in the following.

We simulate data to arise from two non-exchanging wa-

ter pools with nominal fast (T1,F, T2,F) ← (500, 20)ms and

slow (T1,S, T2,S) ← (1000, 80)ms relaxation time constants

selected from prior measurements [3, 15]. We assign fast-

compartment fractions fF ← 0.15 in WM and fF ← 0.03
in GM and constrain slow-compartment fractions as 1 − fF.

We prescribe these parameter values to the anatomy of the

BrainWeb digital phantom [21] to produce ground truth pa-

rameter maps. Using optimized acquisition parameters and

allowing κ to model ±20% flip angle variation, we apply

two-compartment SPGR and DESS models to the 81st ax-

ial slice of the true parameter maps. We corrupt these (com-

plex) noiseless signals with additive complex Gaussian noise

whose covariance Σ ←
(
1.49× 10−7

)
ID←10 reflects mea-

surements from normalized datasets [20]. This yields realisti-

cally noisy 217× 181 (image-domain) datasets ranging from

24.3-48.8dB SNR in WM and 26.4-49.5dB SNR in GM.

Because the first and second DESS signals depend dif-

ferently on phase accrual due to off-resonance effects [20],

off-resonance related phase (unlike signal loss) cannot be col-

lected into m0. To avoid (separate or joint) estimation of an

off-resonance field map, we elect to estimate parameters us-

ing magnitude SPGR and DESS image data and account for

consequently Rician-distributed noise during training.

To sample training points, we assume prior distributions

on latent parameters x (that distinguish the two compart-

ments but are otherwise conservative) and directly measure

known parameter ν and noise ǫ distributions from test data.

1We collect off-resonance effects in m0 by approximating broadening

distributions to be constant across compartments, as in prior works [14, 15].

We acknowledge this could lead to some bias in practice.
2Since SPGR (DESS) yields one (two) signal(s) per excitation, four

SPGR and three DESS scans produce a total D ← 10 datasets.
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Fig. 1: True fF (left) and estimated f̂F fast-relaxing compartmental fraction maps, in simulation. Maximum-likelihood estima-

tion via variable projection method and grid search (center) is accurate but is computationally expensive. In contrast, kernel

ridge regression (right) is very fast and achieves comparable precision, at the expense of slightly increased bias (cf. Table 1).

Voxels outside WM/GM regions are masked out in post-processing for visual clarity.

We take fF to be uniformly distributed on [−0.1, 0.4] and

T1,F, T2,F, T1,S, T2,S to be log-uniformly distributed on

[50, 700]ms, [5, 50]ms, [700, 2000]ms, [50, 300]ms, respec-

tively. We match the scaling of test data in training by taking

m0 to be uniformly distributed on
[
2.22× 10−16, u

]
, where

u is set as 5× the maximum value of test data. We estimate

the distribution of ν via kernel density estimation [22]. We

assume noise covariance Σ of form σ2I10 and compute noise

variance estimate σ̂2 from Rayleigh-distributed noise regions

of magnitude test data, using estimators described in [23].

We sample N ← 106 training inputs from these distribu-

tions and use two-compartment SPGR/DESS signal models to

evaluate corresponding (noisy, magnitude) responses. We set

smoothing length scale Λ as a diagonal matrix, with diagonal

entries set as squared sample means of test data and known κ.

We sample (v, s) Z ← 103 times to construct approximate

feature mapping z̃Z . We apply z̃Z to training data and com-

pute sample means mx, mz̃ and sample covariance matrices

Cxz̃, Cz̃z̃. Lastly, we set ρ ← σ̂2 and evaluate (15) using

test datasets and κ on a per-voxel basis. On a 3.5GHz desk-

top computer with 32GB RAM running MATLAB R© R2013a,

training and estimating each took less than 40s and 2s.

Fig. 1 compares KRR estimates of fast-relaxing compart-

mental fraction fF against not only ground truth maps but

also maximum-likelihood estimates achieved via the “vari-

able projection” method (VPM) [24] and grid search. As

presented, the VPM estimate utilizes a dictionary of nearly

8 × 106 signal vectors computed using finely spaced sam-

ples on an unrealistically narrow feasible region consisting

of a hypercube with boundaries set as [−0.1, 0.4] in fF and

±20% away from the truth in other dimensions. Using equal

computational resources, estimation via VPM took nearly 4h.

Table 1 reports fF sample statistics computed over 7810
WM-like and 9162 GM-like voxels. Overall, KRR and VPM

Truth VPM KRR

WM f̂F 0.15 0.1538± 0.0292 0.1440± 0.0221

GM f̂F 0.03 0.0336± 0.0232 0.0407± 0.0231

Table 1: Sample means± sample standard deviations of fast-

relaxing compartmental fraction estimates f̂F, computed over

simulated WM- and GM-like voxels. Each sample statistic

is rounded off to the highest place value of its (unreported)

standard error, which is computed via formulas in [25].

achieve comparable estimation performance. In WM, KRR

attains precision slightly higher than and accuracy similar to

VPM. In GM, KRR attains precision comparable to and accu-

racy slightly lower than VPM. KRR attains root mean squared

errors lower than VPM in WM (0.0229 versus 0.0295) and

comparable to VPM in GM (0.0254 versus 0.0235).

4. SUMMARY

We introduced a fast and computationally efficient method for

MRI parameter estimation from nonlinear models via KRR.

As proof of concept, we applied KRR to quantify in simu-

lation fast-relaxing compartmental fraction fF maps (along

with several nuisance parameters) using two-compartment

signal models of realistic SPGR and DESS acquisitions. In

f̂F WM/GM regions, KRR achieved comparable estimation

performance as VPM-accelerated grid search, with dramati-

cally reduced computation. Due to its generality, KRR could

potentially accelerate MRI parameter estimation in many

other applications, particularly those involving multiple latent

parameters and/or cumbersome if not altogether unavailable

signal models (as in, e.g., MR fingerprinting [5]).
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