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ABSTRACT

Sparsity-based approaches have been popular in many appli-
cations in image processing and imaging. Recent research has
shown the usefulness of sparsity or low-rank techniques for
solving inverse problems such as those in dynamic imaging.
In particular, the imaged temporal data sequence is modeled
as a sum of low-rank and sparse components that are esti-
mated from measurements. In this work, we instead decom-
pose the temporal image sequence into a low-rank component
and a component whose spatiotemporal patches are assumed
sparse in some adaptive dictionary domain. We present a
methodology to jointly estimate the underlying signal com-
ponents and the spatiotemporal dictionary from highly under-
sampled measurements. Our numerical experiments demon-
strate the promising performance of our scheme for dynamic
magnetic resonance image reconstruction from undersampled
k-t space data.

Index Terms— Dynamic imaging, Structured models,
Sparse representations, Dictionary learning, Inverse prob-
lems.

1. INTRODUCTION

Sparsity-based techniques have been extremely popular in
many applications in image processing and imaging. Com-
pressed sensing (CS) [1,2] is a popular technique that enables
accurate recovery of signals or images from far fewer mea-
surements than the number of unknowns or than required by
Nyquist sampling conditions. CS assumes that the underly-
ing signal is sparse in some transform domain or dictionary
and that the measurement acquisition procedure is incoherent
in an appropriate sense with the dictionary. CS has been
shown to be very useful for magnetic resonance imaging
(MRI) [3, 4]. MRI is a relatively slow modality because the
data, which are samples in the Fourier space (or k-space) of
the object, are acquired sequentially in time. CS-based MRI
(CSMRI) involves undersampling the k-space data using ran-
dom sampling techniques to accelerate data acquisition. CS
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has been applied to parallel imaging (pMRI) [5, 6] and to
dynamic MRI (dMRI) [4, 7].

CSMRI reconstructions with fixed, non-adaptive signal
models (e.g., wavelets or total variation sparsity) typically
suffer from artifacts at high undersampling factors [8]. Thus,
there has been growing interest in image reconstruction meth-
ods where the dictionary is adapted to the data. For example,
DLMRI [8] jointly estimates the image and a dictionary for
the image patches from undersampled k-space measurements.
The model here is that the (vectorized) image patches can
be well approximated by a sparse linear combination of the
columns of a learned (a priori unknown) dictionary D. Such
adaptive dictionaries reflect image properties better than fixed
models and can lead to better image reconstructions.

For dynamic data such as videos, there has been growing
interest in decomposing the data into the sum of a low-rank
(L) and a sparse (S) component [9, 10]. In this model, the L
component may capture the background of the video, while
the S component captures the sparse (dynamic) foreground.
The L+S model has been recently shown to be promising for
CS-based dynamic MRI [11]. The S component of the L+S
decomposition could either be sparse by itself or sparse in
some known dictionary or transform domain. While some
works considered modeling the image sequence in dMRI as
both low-rank and sparse (L & S) [12, 13], the more general
L+S model may provide better quality reconstructions [11].

When employing the L+S model, the CS reconstruction
problem can be formulated as follows:

(P0) min
xL, xS

1

2
∥E(xL + xS)− d∥22 + λL ∥R1(xL)∥∗

+ λS ∥TxS∥1 .

In (P0), the underlying unknown dynamic object is x = xL+
xS ∈ CNxNyNt , where xL and xS are vectorized versions
of space-time tensors corresponding to Nt temporal frames,
each an image of size Nx ×Ny . The operator E is the sens-
ing or encoding operator and d denotes the (undersampled)
measurements. For parallel imaging with Nc receiver coils,
applying the operator E involves frame-by-frame multiplica-
tion by coil sensitivities followed by the application of an un-
dersampled Fourier encoding (i.e., the SENSE method) [14].
The operation R1(xL) reshapes xL into an NxNy × Nt ma-
trix, and ∥·∥∗ denotes the nuclear norm that sums the singular
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values of a matrix. The nuclear norm serves as a convex sur-
rogate for matrix rank in (P0). Traditionally, the operator T
in (P0) is a known sparsifying transform for xS , and λL and
λS are non-negative weights.

In this work, we extend the L+S model for dynamic data
to a Low-rank + Adaptive Sparse SIgnal (LASSI) model.
In particular, we decompose the underlying temporal image
sequence into a low-rank component and a component whose
spatiotemporal patches are assumed sparse in some adaptive
dictionary domain. We propose a framework to jointly esti-
mate the underlying signal components and the spatiotempo-
ral dictionary from highly undersampled measurements. Our
experiments demonstrate the promising performance of our
data-driven model for dMRI reconstructions from undersam-
pled k-t space data. In particular, we show that LASSI gives
much improved reconstructions and richer decompositions
compared to the conventional L+S model.

2. PROBLEM FORMULATION AND ALGORITHM

Here, we present our problem formulation for dynamic im-
age reconstruction from undersampled measurements and an
efficient algorithm for it.

2.1. Problem Formulation

We model the dynamic image data as x = xL + xS , where
xL is low-rank when reshaped into a (space-time) matrix, and
we assume that the spatiotemporal (3D) patches in the vector-
ized tensor xS are sparse in some adaptive dictionary domain.
The proposed joint image sequence and dictionary estimation
problem is as follows:

(P1) min
D,B,xL,xS

1

2
∥E(xL + xS)− d∥22 + λL ∥R1(xL)∥∗

+ λS

{∑M
j=1 ∥PjxS −Dbj∥22 + λ2

B ∥B∥0
}

s.t. ∥B∥∞ ≤ a, rank (R2(di)) ≤ r, ∥di∥2 = 1 ∀ i.

Here, Pj is a patch extraction operator that extracts an mx ×
my × mt spatiotemporal patch from xS as a vector. Ma-
trix D ∈ Cm×K with m = mxmymt is the dictionary and
bj ∈ CK is the sparse code for the jth patch. We use B ∈
CK×M to denote the matrix that has the sparse codes bj as its
columns, ∥B∥0 counts the number of non-zeros in the matrix
B, and λB ≥ 0. The constraint ∥B∥∞ , maxj ∥bj∥∞ ≤ a,
with a > 0 (typically very large) is used because the objective
in (P1) is non-coercive with respect to B [15].

The atoms or columns of D, denoted by di, are con-
strained to have unit norm in (P1) to avoid scaling ambiguity
between D and B [16]. We also model the reshaped dictio-
nary atoms R2(di) as having rank (at most) r > 0, where
R2(·) is the operator that reshapes di into a mxmy × mt

space-time matrix. The rank constraint in (P1) enables local

low-rank and sparse modeling in xS . Such structured dictio-
nary learning may be less prone to over-fitting in applications
involving limited or corrupted data.

Problem (P1) jointly learns a decomposition x = xL+xS

and a dictionary D along with the sparse coefficients B from
the measurements d. Unlike Problem (P0), the fully-adaptive
Problem (P1) is nonconvex.

2.2. LASSI Algorithm

We propose an efficient block coordinate descent-type algo-
rithm for (P1), where, in one step, we update (D,B) keeping
(xL, xS) fixed, and then we update (xL, xS) keeping (D,B)
fixed. We then repeat these alternating steps in an iterative
manner.

2.2.1. Update of D and B

Here, we optimize (P1) with respect to (D,B). Denoting
by P the matrix that has the patches PjxS as its columns,
and with C , BH , the optimization problem with respect to
(D,B) can be rewritten as

(P2) min
D,C

∥∥P −DCH
∥∥2
F
+ λ2

B ∥C∥0

s.t. ∥C∥∞ ≤ a, rank (R2(di)) ≤ r, ∥di∥2 = 1 ∀ i.

We employ block coordinate descent for (P2), where the
columns ci of C and atoms di of D are updated sequen-
tially by cycling over all i values [15]. Specifically, for each
1 ≤ i ≤ K, we solve (P2) first with respect to ci and then
with respect to di.

For the minimization with respect to ci, we have the fol-
lowing subproblem, where Ei , P −

∑
k ̸=i dkc

H
k is com-

puted using the most recent estimates of the other atoms and
coefficients:

min
ci

∥∥Ei − dic
H
i

∥∥2
F
+ λ2

B ∥ci∥0 s.t. ∥ci∥∞ ≤ a, (1)

The minimizer ĉi of (1) is given by [15]

ĉi = min
(∣∣HλB

(
EH

i di
)∣∣ , a1M)

⊙ ej∠EH
i di , (2)

where the hard-thresholding operator HλB
(·) zeros out vec-

tor entries with magnitude less than λB . Here, 1M denotes a
vector of ones of length M , “⊙” denotes element-wise mul-
tiplication, min(·, ·) denotes element-wise minimum, and we
choose a such that a > λB . For a vector c ∈ CM , ej∠c ∈ CM

is computed element-wise, with “∠” denoting the phase.
Optimizing (P2) with respect to the atom di while holding

all other variables fixed yields the following subproblem:

min
di

∥∥Ei − dic
H
i

∥∥2
F

s.t. rank (R2(di)) ≤ r, ∥di∥2 = 1.

(3)
Let UrΣrV

H
r denote an optimal rank-r approximation to

R2 (Eici) that is obtained using the r leading singular vectors



and singular values of the full SVD R2 (Eici) , UΣV H .
Then a global minimizer of (3), upon reshaping, is

R2(d̂i) =

{
UrΣrV

H
r

∥Σr∥F
, if ci ̸= 0

v, if ci = 0
(4)

where v is any normalized matrix with rank at most r, of ap-
propriate dimensions (e.g., reshaped first column of the m×m
identity). The proof for (4) is not included here due to space
constraints and is presented elsewhere [17].

2.2.2. Update of xL and xS

Minimizing (P1) with respect to xL and xS yields the follow-
ing subproblem:

(P3) min
xL,xS

1

2
∥E(xL + xS)− d∥22 + λL ∥R1(xL)∥∗

+ λS

M∑
j=1

∥PjxS −Dbj∥22 .

Problem (P3) is convex but nonsmooth. The objective in (P3)
can be written in the form f(xL, xS) + g1(xL) + g2(xS),
with f(xL, xS) , 0.5 ∥E(xL + xS)− d∥22, g1(xL) ,
λL ∥R1(xL)∥∗, and g2(xS) , λS

∑M
j=1 ∥PjxS −Dbj∥22.

Similar to prior work [11], we employ a proximal gradient
method for solving (P3). The iterates of the proximal gradient
scheme, denoted by superscript k, take the following form:

xk
L = proxtkg1(x

k−1
L − tk∇xL

f(xk−1
L , xk−1

S )), (5)

xk
S = proxtkg2(x

k−1
S − tk∇xS

f(xk−1
L , xk−1

S )), (6)

where the proximity function is defined as

proxtkg(y) = argmin
z

1

2
∥y − z∥22 + tk g(z), (7)

and the gradients of f are given by

∇xL
f(xL, xS) = ∇xS

f(xL, xS) = E∗E(xL + xS)− E∗d.

The update in (5) corresponds to the singular value
thresholding (SVT) operation [18]. Specifically, denot-
ing by QΛWH the SVD of R1(x̃

k−1
L ), where x̃k−1

L ,
xk−1
L −tk∇xL

f(xk−1
L , xk−1

S ), it follows from (5) and (7) [18]
that R1(x

k
L) = QΛ̂WH , where Λ̂ is a diagonal matrix with

entries

Λ̂ii = (Λii − tkλL)
+, (8)

and (·)+ = max(·, 0).
Let x̃k−1

S , xk−1
S − tk∇xS

f(xk−1
L , xk−1

S ). Then it fol-
lows from (6) and (7) that xk

S satisfies the Normal equation(
I + 2tkλS

∑M
j=1 P

T
j Pj

)
xk
S = x̃k−1

S + 2tkλS

M∑
j=1

PT
j Dbj .

(9)

Solving (9) for xk
S is straightforward because the matrix pre-

multiplying xk
S is diagonal, and thus its inverse can be com-

puted cheaply.
The proximal gradient method for (P3) has been shown

to converge [19] for a constant step-size tk = t < 2/ℓ,
where ℓ is the Lipschitz constant of ∇f(xL, xS). For (P3),
ℓ = 2 ∥E∥22.

3. NUMERICAL EXPERIMENTS

3.1. Framework

Here, we illustrate the performance of our method for dMRI
reconstruction from k-t space data. We perform simula-
tions with the Cartesian cardiac perfusion data used in prior
work [11]. The data were acquired with a modified Tur-
boFLASH sequence on a 3T scanner using a 12-element coil
array. Fully-sampled perfusion image data with an image ma-
trix size of 128 × 128 and 40 temporal frames was acquired
with FOV = 320× 320 mm2, slice thickness = 8 mm, spatial
resolution = 3.2 mm2, and temporal resolution of 307 ms.

The fully-sampled data were retrospectively undersam-
pled using a different variable-density random Cartesian un-
dersampling pattern along ky for each time frame. We simu-
late several undersampling (acceleration) factors, each with a
new randomly generated undersampling pattern, in our exper-
iments. We measure the quality of the dMRI reconstructions
using the normalized root mean square error (NRMSE) metric
defined as

NRMSE =
∥xrecon − xref∥2

∥xref∥2
, (10)

where xref is a reference reconstruction from the fully-
sampled data, and xrecon is the reconstruction from under-
sampled data.

We compare the quality of reconstructions obtained with
the proposed LASSI method to those obtained with the recent
L+S method [11]. For the L+S method, we used the pub-
licly available MATLAB implementation [20] with T set to a
temporal Fourier transform, and we chose the parameters λL

and λS by sweeping over a range of values and choosing the
settings that achieved the best NRMSE in our experiments.
Specifically, we set λL = 0.525 and λS = 0.01, and we ran
the L+S method for 250 iterations to ensure convergence.

For the LASSI method, we set λL = 0.5, λS = 0.01,
and λB = 0.03. We extracted spatiotemporal patches of size
8×8×5 from xS in (P1) with spatial and temporal patch over-
lap strides of 2 pixels, and we set r = 1. We ran LASSI for 50
outer iterations with 1 and 5 inner iterations in the (D,B) and
(xL, xS) updates, respectively. Since Problem (P1) is non-
convex, the proposed algorithm needs to be initialized appro-
priately. We initialized D with the 320×320 DCT, initialized
B = 0, and initialized xL and xS with the output of the L+S
method with λL = 1.2 and λS = 0.01.



Reference L + S  [11] L S

F7

F13

Fig. 1. 8x undersampling: Frames 7 and 13 of the conven-
tional L+S reconstruction [11] along with the corresponding
reference frames. The low-rank (L) and sparse (S) com-
ponents of each reconstructed frame are also individually
shown. Only image magnitudes are displayed.

Undersampling 20x 16x 12x 8x 4x
NRMSE (L+S) % 21.0 17.8 15.6 13.7 10.9

NRMSE (LASSI) % 20.6 17.0 14.5 12.5 10.2
Improvement (dB) 0.17 0.40 0.64 0.80 0.58

Table 1. NRMSE values expressed as percentages for the
L+S [11] and LASSI methods at several undersampling (ac-
celeration) factors. The best NRMSE values for each under-
sampling rate are marked in bold, and the improvement by
LASSI in each case is indicated in decibels (dB).

3.2. Results

Table 1 lists the NRMSE values as percentages for the L+S
[11] and LASSI methods at various undersampling factors of
k-t space. The proposed LASSI method provides lower re-
construction error for each undersampling factor tested. In
particular, the adaptive sparse modeling of the xs component
of LASSI yields NRMSE improvements up to 0.8 dB. In our
experiments, we observed small NRMSE improvements us-
ing the r = 1 constraint on the reshaped dictionary atoms
(used in Table 1) compared to the full-rank (r = 5) case [17].

Figures 1 and 2 show reconstructions of two representa-
tive frames produced by the L+S and LASSI methods, respec-
tively, with eightfold undersampling of k-t space. The LASSI
reconstructions are sharper and a better approximation of the
reference frames (i.e., fully-sampled reconstructions) shown.
Figs. 1 and 2 also show the xL and xS components of the
reconstructed frames. In particular, the xL component of the
LASSI reconstruction is clearly low-rank, and the xS compo-
nent captures the changes in contrast and other dynamic fea-
tures in the data. On the other hand, the xL component of the
conventional L+S reconstruction varies more over time (i.e., it
has higher rank), and the xS component contains relatively lit-
tle information. The richer (xL, xS) decomposition produced

Reference LASSI L S

F7

F13

Fig. 2. 8x undersampling: Frames 7 and 13 of the proposed
LASSI reconstruction along with the corresponding reference
frames. The low-rank (L) and adaptive dictionary-sparse (S)
components of each reconstructed frame are also individually
shown. Only image magnitudes are displayed.

Reference L + S  [11] LASSI

F13

Fig. 3. Zoomed-in views of Frame 13 of the reconstructions
in Figures 1 and 2. The arrows highlight that the proposed
LASSI reconstruction more accurately recovers the contrast
seen in the reference reconstruction than the conventional
L + S reconstruction [11].

by LASSI suggests that both the low-rank and adaptive-sparse
components of the model are well-suited for dMRI.

Figure 3 shows zoomed-in views of the reconstructions
from Figs. 1 and 2. The proposed LASSI method produces
images with better contrast along the myocardial wall com-
pared to the conventional L+S method, and more accurately
reflects the reference reconstruction.

4. CONCLUSIONS

In this work, we investigated a novel framework for recon-
structing spatiotemporal data from highly undersampled mea-
surements. The proposed framework jointly learns a low-rank
and dictionary-sparse decomposition of the underlying image
sequence together with a spatiotemporal dictionary. The pro-
posed algorithm involves simple and efficient updates. Our
experimental results show the potential of our method for ac-
celerated dynamic MR imaging compared to recent works.
We present more extensive results elsewhere [17]. The use-
fulness of our scheme in other inverse problems and image
processing applications merits further study.
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