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ABSTRACT

Recent advances in TOF PET joint estimation of activity and

attenuation showed that activity and attenuation can be de-

termined up to a global constant scale without severe cross-

talk. MLAA was first proposed to estimate activity and at-

tenuation map simultaneously, and then MLACF was devel-

oped to estimate activity and attenuation compensation factor

(ACF). MLAA incorporated prior knowledge on the zero at-

tenuation value outside body area to determine global scalar,

but was slow to converge. MLACF converged much faster

than MLAA, but required knowing total activity level in ad-

vance. We propose a new optimization method based on vari-

able splitting and alternating direction method of multiplier

(MLADMM). Our proposed MLADMM achieved fast con-

vergence rate comparable to MLACF without knowing total

activity level. MLADMM also has a potential to use more

sophisticated MR-based prior for attenuation in PET-MR.

Index Terms— TOF PET, Joint estimation, ADMM

1. INTRODUCTION

Attenuation correction is important for accurate quantitation

in emission tomography. Sequentially acquired CT along

with emission data has been dominantly used in clinics for

attenuation correction. However, this procedure has a few dis-

advantages: possible misalignment between emission image

and CT and additional radiation dose due to CT.

Simultaneous estimation of activity and attenuation from

emission data only can be a potential solution for these prob-

lems, but had very limited success due to severe cross-talk

between activity and attenuation. Recently, Defrise et al.

showed that one can determine activity and attenuation from

TOF-PET data up to a global constant scale [1]. Based on this

finding, two algorithms were proposed: maximum likelihood

activity and attenuation reconstruction (MLAA) [2] and max-

imum likelihood activity and ACF (MLACF) [3]. MLACF
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showed faster convergence rate in terms of likelihood (how-

ever, [3] reported that MLACF had slower convergence in

terms of mean squared difference) and required lower com-

putation complexity than MLAA.

However, MLACF also has a few disadvantages: MLACF

depends on rather unrealistic assumption of known total ac-

tivity level and cannot use image-domain priors for estimating

attenuation such as a MR-based prior in TOF PET-MR [4]. To

determine a constant scaling, both methods used prior knowl-

edge: zero attenuation outside body contour (MLAA) and

known total activity level (MLACF). Slight mis-segmentation

for body contour could be compensated by using a regular-

izer that encourages attenuation map to have either zero or

tissue attenuation. In contrast, measuring total activity level

before reconstruction is challenging, so it is somewhat im-

practical [3].

This paper proposes a new optimization method using

alternating direction method of multiplier (ADMM). In this

method, activity, attenuation map, and ACF will be estimated

jointly and constant scaling will be determined by using a

prior on zero attenuation outside body contour. Our pro-

posed method does not require known total activity level and

can accommodate any prior for the attenuation map such as

MR-based prior in PET-MR. Each sub-problem is solved by

using an optimization transfer method based on De Pierro’s

lemma [5]. We also show that the MLACF algorithm can be

derived based on the well-established optimization transfer

method.

Section 2 derives a new algorithm for TOF PET joint esti-

mation of activity and attenuation using variable splitting and

ADMM. Section 3 presents 2D TOF PET simulation results

using XCAT phantom for noiseless data and noisy data.

2. METHOD

2.1. Previous Methods

The expected count ȳit for the line of response (LOR) i and

time difference t in TOF-PET can be expressed:

ȳit(λ, µ) = exp

{

−
∑

k

likµk

}

J
∑

j=1

cijtλj + sit (1)
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where λj , µk are the activity and attenuation coefficient at

voxel j and k, respectively. J is the total number of voxels,

cijt is the sensitivity of the detector at (i, t) for activity in

voxel j in absence of attenuation, lik is the intersection length

of LOR i with voxel k, and sit is the expected contribution of

scatter and/or randoms.

Then, for the measured data yit, which is a Poisson real-

ization with the mean ȳit, the log-likelihood function is

L(λ, µ; y) =
∑

it

yit log ȳit(λ, µ) − ȳit(λ, µ). (2)

MLAA obtains the maximum likelihood (ML) estimate

(λ̂, µ̂) = arg max
λ≥0, µ≥0

L(λ, µ; y)− ηR(µ) (3)

where R(·) is a regularizer that encourages µ to be either zero

or tissue attenuation outside the body area only. MLAA alter-

natively maximizes (2) with respect to λ and µ.

Instead of estimating attenuation map µ, which is usually

a nuisance parameter, ACF can be estimated. Then, (1) can

be modified as follows [3]:

ȳit(λ, a) = ai

J
∑

j=1

cijtλj + sit = pitai + sit. (4)

Thus, MLACF performs the following maximization to esti-

mate activity and ACF:

(λ̂, â) = arg max
λ≥0,a≥0

L(λ, a; y) (5)

where

L(λ, a; y) =
∑

it

yit log ȳit(λ, ai)− ȳit(λ, ai). (6)

To determine a global constant scaling, for each iteration, to-

tal activity level compensation was done in [3] without chang-

ing the value of likelihood (λ = δλ, a = a/δ such that δλ
contains known total activity level. A scalar constant δ should

be obtained at each iteration). Note that image domain prior

can not be used in MLACF.

2.2. Proposed Method

We re-formulate the original problem of MLAA in (3) using a

single variable splitting, which is also used in [6], as follows:

(λ̂, µ̂) = argmin
λ≥0, µ≥0, 0≤a≤1

−L(λ, a; y) + ηR(µ) (7)

subject to ai = exp {−
∑

k likµk} . To solve this con-

strained optimization problem, we construct an augmented

Lagrangian term AL(λ, µ, a, d)

−L(λ, a; y) + ηR(µ) +
α

2

∑

i

(ai − e−
∑

k
likµk − di)

2 (8)

where d is a Lagrangian multiplier vector that is scaled by α
and α > 0 is a design parameter that may affect the speed

of convergence and which local minimizer is found. We opti-

mize AL(·) using the following algorithm:

For n =0 , 1 , 2 , · · ·

â(n+1) ∈ arg min
0≤a≤1

AL(λ̂(n), µ̂(n), a, d̂(n))

λ̂(n+1) ∈ argmin
λ≥0

−L(λ, â(n+1); y)

µ̂(n+1) ∈ argmin
µ≥0

1

2
‖â(n+1) − e−Lµ − d̂(n)‖2

+ ηR(µ)

d(n+1) = d(n) − (â(n+1) − e−Lµ̂(n+1)

)

End

(9)

(10)

(11)

(12)

where L is a matrix with elements lij and e(·) is a component-

wise function. For each sub-problem, more than one iter-

ation is possible. The sub-problem (10) can be solved us-

ing standard OSEM algorithm for fixed â, which is also used

in MLACF [3]. The sub-problem (12) is solved using one

step gradient ascent. The following sections derive algorithms

for the sub-problems (9) and (11) using optimization transfer.

Optimization for each sub-problem can be accelerated using

ordered subset (OS) approximation [7]. Although (8) does

not have local minima for (λ, a) (other than the global mini-

mum) for consistent TOF measurements [3], it is not convex

for µ. Thus, AL(λ, µ, a, d) may have many local minima with

respect to (λ, µ). More investigation is needed for avoiding

local minima.

2.3. Algorithm for Sub-Problem (9)

For the sub-problem (9), we used De Pierro’s lemma to derive

a surrogate function for the likelihood of the original prob-

lem [5]:

∑

it

hit(pitai + sit) ≤
∑

it

pit
ani
ȳnit

hit

(

ai
ani

ȳnit

)

+
sit
ȳnit

hit (ȳ
n
it)

where ȳnit =
∑

ξ â
n
i ciξtλξ + sit and hit(z) = z − yit log z.

By removing constant terms, a separable quadratic surrogate

function of (8) for parameter ai becomes

Qi(ai; â
n
i ) = piai − âni e(â

n
i ) log ai +

α

2
(ai − bni )

2 (13)

where pi =
∑

t pit, e(ani ) =
∑

t pityit/ȳ
n
it, and bni =

exp(−[Lµ̂n]i) + d̂ni . Then, the minimizer of (13) with re-

spect to ai is found by zeroing its derivative and using the

quadratic formula. This optimization transfer based algo-

rithm is guaranteed to converge monotonically. Note that if

α = 0, then the minimizer of (13) is reduced to the same

algorithm for the sub-iteration of MLACF [3]. Regularizers

can be incorporated in this algorithm as shown in [5].
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2.4. Algorithm for Sub-Problem (11)

For the subproblem (11) with non-convex cost function, we

used a nested optimization transfer that was applied to trans-

mission tomography reconstruction [8]. Firstly, a nonsepara-

ble quadratic surrogate qi for (11) is
∑

i

gi ([Lµ]i) ≤
∑

i

qi([Lµ]i; l
n
i ) (14)

where lni = [Lµn]i, gi(l) =
(

e−l − ai + di
)2

/2,

qi(l; l
n
i ) = gi(l

n
i ) + ġi(l

n
i )(l − lni ) +

1

2
ci(l

n
i )(l − lni )

2

where the optimum curvature ci is described in [8]. Then, a

separable quadratic surrogate (SQS) for (14) can be derived

using De Pierro’s lemma [5]:

∑

i

qi([Lµ]i; l
n
i ) ≤

∑

ij

lij
γi

qi(γi(µj−µn
j )+[Lµn]i; l

n
i ) (15)

where γi =
∑

j lij . This SQS with a separable surrogate

regularizer
∑

j rj(µj) for R(µ) can be minimized using 1D

Newton-Raphson type sub-iterations:

µn+1
j = µn

j −
1

dj + ηr̈j(µj)

{

∑

i

∂gi ([Lµ
n]i)

∂µj

+ ηṙj(µj)

}

where dj =
∑

i lijγici(l
n
i ) and ṙj(·), r̈j(·) are the first and

second order derivatives of rj(·), respectively. One can find

a separable surrogate regularizer for any R(µ) using De

Pierro’s lemma (see [8] for examples). In this work, we chose

to use the same regularizer as that in MLAA [2], which is

already separable.

3. SIMULATION RESULTS

3.1. Setup

TOF PET simulation was performed with a 2D XCAT phan-

tom [9]. The 2D system matrix modeled Discovery GE 690

TOF PET with the image size 180 x 180 pixels (3.27 x 3.27

mm), TOF sinogram of 281 radial bins, 288 angular bins and

11 TOF bins (the simulated TOF resolution was 500 ps). 50%

random was added and it is assumed to be known during the

reconstruction. Both noiseless and noisy sinograms were used

for testing the proposed method.

In the reconstruction, 100 iterations with 32 subsets were

used. We performed MLEM (assuming known CT as a base-

line for comparison), MLAA, MLACF, and the proposed

method (MLADMM). The ratios of sub-iterations for at-

tenuation update to sub-iteration for activity update were

5:1 (MLAA), 3:1 (MLACF), 3:2:1 (MLADMM, attenuation

map: ACF: activity). Note that MLAA and MLADMM used

a regularizer that encourages zero or tissue attenuation value

outside the body area and MLACF assumed known total

activity level before reconstruction.

3.2. Result: Noiseless Sinogram

Fig. 1 shows the results for noiseless TOF sinogram data.

Normalized likelihood in (a) shows that the initial conver-

gence rate of the proposed MLADMM is comparable to that

of MLACF and much faster than that of MLAA. Note that

MLACF requires known total activity to achieve fast con-

vergence. Normalized root mean squared error (RMSE) be-

tween estimated and true activity images in (b) also shows that

MLADMM converged faster than MLAA, which is compara-

ble to MLACF. First five estimated images (with 32 subsets)

of activity (c) and ACF (d) show that MLADMM yielded ac-

tivity comparable to MLACF and better ACF than MLAA and

MLACF.
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Fig. 1. Results from noiseless TOF sinogram.
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3.3. Result: Noisy Sinogram

Fig. 2 shows the results for moderately noisy TOF sinogram

data. These results show similar tendency to those in noiseless

sinogram results. Fig. 2 (a) shows that MLADMM yielded

fast initial convergence rate over MLAA and (b) shows

that MLADMM achieved comparable minimum RMSE to

MLACF without knowing total activity. Note that all meth-

ods in (b) yielded higher RMSE for more iteration since the

original problem is not regularized. One can use either a

regularizer for activity or early stop rule. First five iterations

of activity (c) and attenuation (d) also show that MLADMM

yielded comparable activity image to MLEM and MLACF

without knowing either CT or total activity level and achieved

similar quality of attenuation over MLAA and MLACF.
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Fig. 2. Results from moderately noisy TOF sinogram.

4. CONCLUSION

We proposed a new method for joint estimation of activity and

attenuation from TOF sinogram data. MLADMM converged

faster than MLAA and also achieved comparable results to

MLACF without knowing total activity level. MLADMM has

potential to incorporate image-domain prior in PET-MR.
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