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Abstract—Statistical image reconstruction (SIR) methods en-
able acquiring computed tomography (CT) scans with lower
X-ray dose while maintaining image quality. However, the
iterative nature of algorithms in SIR methods increases the
reconstruction time, hindering their use in practice. Relaxation
(especially over-relaxation) is a common technique to accelerate
convergence of iterative algorithms. For instance, using a relax-
ation parameter that is close to two in the alternating direction
method of multipliers (ADMM) has been shown to speed up
convergence significantly. When we consider a linearized ADMM
(or augmented Lagrangian [AL] method), applying relaxation is
not trivial, and the simple relaxation approach that extends the
existing relaxed ADMM to its linearized variant directly does
not work well. This paper proposes one way to properly use
relaxation in linearized AL methods and applies the proposed
relaxed linearized AL method to X-ray CT image reconstruction
problems. Experimental results show that the proposed relaxed
algorithm (with moderate ordered-subsets [OS] acceleration) is
about twice as fast as the unrelaxed counterpart in a 3D XCAT
phantom simulation.

I. INTRODUCTION

Relaxation (usually over-relaxation) is a common technique
to speed up convergence of iterative algorithms. For example,
over-relaxation is very effective for accelerating the alternating
direction method of multipliers (ADMM) [1, 2], provided that
all inner minimization problems of ADMM can be solved
efficiently. However, in problems like X-ray computed to-
mography (CT) image reconstruction, exact image updates in
typical ADMM methods would require inverting an enormous
non-circulant Hessian matrix involving the system matrix A,
precluding the use of exact updates in practice.

In such cases, a linearized ADMM or augmented La-
grangian (AL) method [3, 4] becomes more attractive be-
cause these methods replace the image update by a prox-
linear step that one can solve exactly or iteratively without
using A and A′. We can interpret the linearized AL method
(LALM) as a proximal-point variant of AL methods with an
additional iteration-dependent proximity term adding to the
image subproblem. However, adding the extra proximity term
changes the original alternating direction AL framework, so
adapting the original relaxation approach [1, Theorem 8] to
the linearized AL methods is not trivial.

This paper proposes a non-trivial relaxed variant of lin-
earized AL methods and applies the proposed relaxed LALM
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to X-ray CT image reconstruction problems. Experimental
results show that our proposed relaxation works much better
than the simple relaxation [5] and significantly accelerates X-
ray CT image reconstruction, even with ordered-subsets (OS)
acceleration.

II. METHOD

Consider an equality-constrained minimization problem:

(x̂, û) ∈ arg min
x,u

{
g(u− y) + h(x)

}
s.t. u = Ax , (1)

where g and h are closed and proper convex functions. In
particular, g is called the loss function that measures the fitness
between the linear model Ax and noisy measurement y, and h
is a regularization term introducing the prior knowledge of x
to the reconstruction. For example, one can write statistical
X-ray CT image reconstruction as a special case of (1),
where g is a weighted quadratic function, and h is an edge-
preserving regularizer (often with a non-negativity constraint
on the image). The relaxed AL method [1, Theorem 8] solves
this problem in an alternating direction manner:




x(k+1) ∈ arg min
x

{
h(x) + ρ

2

∥∥Ax− u(k) − d(k)
∥∥2

2

}

u(k+1) ∈ arg min
u

{
g(u− y) + ρ

2

∥∥r(k+1)
u − u− d(k)

∥∥2

2

}

d(k+1) = d(k) − r
(k+1)
u + u(k+1) ,

(2)
where

r(k+1)
u , αAx(k+1) + (1− α)u(k) (3)

is the relaxation variable of u, ρ > 0 is the AL penalty parame-
ter, and 0 < α < 2 is the relaxation parameter. When α > 1, it
is called over-relaxation, and it is called under-relaxation when
α < 1. When α = 1, (2) reverts to the standard (alternating
direction) AL method. Experimental results suggest that over-
relaxation with α ∈ [1.5, 1.8] can improve convergence [2].
However, the x-update in (2) requires solving a penalized
least-squares problem involving the system matrix A and thus
is expensive in X-ray CT, motivating alternative methods like
LALM.

A. Simple relaxation

In LALM, one uses α = 1 in (2) and just replaces the
quadratic AL penalty term in the x-update of (2):

θk(x) , ρ
2

∥∥Ax− u(k) − d(k)
∥∥2

2
(4)

by its separable quadratic surrogate (SQS) function [4]:

θ̆k
(
x;x(k)

)
∝ 〈∇θk

(
x(k)

)
,x− x(k)〉+ ρ

2

∥∥x− x(k)
∥∥2

DL
, (5)
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(a) ρ = 0.1
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(b) ρ = 0.05

Fig. 1: LASSO regression: RMS differences between the iterate x(k) and the solution x̂ when solving a LASSO regression
problem (12) using proposed relaxed LALM (α = 2) with AL penalty parameters (a) ρ = 0.1 and (b) ρ = 0.05.

where DL is a diagonal majorizing matrix of A′A. This
replacement makes the x-update far simpler and more ef-
ficient. Unlike standard AL methods that have column-rank
constraint on A, LALM converges unconditionally for any
fixed AL penalty parameter ρ and any A [4]. The simple (and
straightforward) relaxed variant of LALM just substitutes the
SQS AL penalty term (5) for the quadratic one (4) in (2)
with α 6= 1 [5]. Note that LALM can also be thought of as an
inexact AL method (with inexact image updates). The updated
image x with simple relaxation might be still far away from the
solution to the x-subproblem in (2). Hence, the extrapolated
relaxation variable r

(k+1)
u could be less useful for speed-up.

B. Proposed relaxation

To properly apply relaxation to LALM, instead of treating
LALM as a proximal-point variant of AL methods, we write it
as the AL method with an extra redundant equality constraint
v = G1/2x, where G , DL−A′A is positive-definite, using
the same AL penalty parameter ρ [4]. This expression allows
us to use the same relaxation approach of standard AL methods
[1, Theorem 8] for accelerating LALM and still guarantees
convergence (and speed-up) as follows:




x(k+1) ∈ arg min
x

{
h(x) + ρ

2

∥∥Ax− u(k) − d(k)
∥∥2

2

+ρ
2

∥∥G1/2x− v(k) − e(k)
∥∥2

2

}

u(k+1) ∈ arg min
u

{
g(u− y) + ρ

2

∥∥r(k+1)
u − u− d(k)

∥∥2

2

}

d(k+1) = d(k) − r
(k+1)
u + u(k+1)

v(k+1) = r
(k+1)
v − e(k)

e(k+1) = e(k) − r
(k+1)
v + v(k+1) ,

(6)
where

r(k+1)
v , αG1/2x(k+1) + (1− α)v(k) (7)

is the relaxation variable of v. As seen in (6), the Hessian
ρA′A of (4) is cancelled by the additional AL penalty term.

One can verify that e(k+1) = 0 if we initialize e as e(0) = 0.
Let h(k) , G1/2v(k) +A′y. We rewrite (6) so that no explicit
multiplication by G1/2 has to be computed, leading to the
following proposed relaxed LALM:




x(k+1) ∈ arg min
x

{
h(x) + 1

2

∥∥x− (ρDL)
−1

γ(k+1)
∥∥2

ρDL

}

u(k+1) ∈ arg min
u

{
g(u− y) + ρ

2

∥∥r(k+1)
u − u− d(k)

∥∥2

2

}

d(k+1) = d(k) − r
(k+1)
u + u(k+1)

h(k+1) = αη(k+1) + (1− α)h(k) ,
(8)

where

γ(k+1) , ρA′
(
u(k) − y + d(k)

)
+ ρh(k) , (9)

and
η(k+1) , DLx

(k+1) −A′
(
Ax(k+1) − y

)
. (10)

When g is a quadratic loss, i.e., g(z) , (1/2) ‖z‖22, the
relaxed LALM can be further simplified by manipulations
similar to those in [4] (that are omitted here due to space
constraints) as:




γ(k+1) = (ρ− 1)g(k) + ρh(k)

x(k+1) ∈ arg min
x

{
h(x) + 1

2

∥∥x− (ρDL)
−1

γ(k+1)
∥∥2

ρDL

}

ζ(k+1) = ∇L
(
x(k+1)

)
, A′

(
Ax(k+1) − y

)

g(k+1) = ρ
ρ+1

(
αζ(k+1) + (1− α)g(k)

)
+ 1

ρ+1g
(k)

h(k+1) = α
(
DLx

(k+1) − ζ(k+1)
)

+ (1− α)h(k) ,
(11)

where L(x) , g(Ax− y) is the quadratic data-fidelity term.
Throughout the algorithm, one only has to compute multipli-
cations by A and A′ once per iteration and does not have to
invert A′A as in standard relaxed AL methods like (2). This
property is especially useful in cases where A′A is large and
non-structured like in CT reconstruction.

To illustrate the speed-up of the proposed relaxation (11),
Figure 1 shows the convergence rate curves (RMS differences
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Fig. 2: XCAT phantom: cropped images (displayed from 800 to 1200 HU) from the central transaxial plane of the initial FBP
image x(0) (left), the reference reconstruction x? (center), and the reconstructed image x(10) using the proposed algorithm
(relaxed OS-LALM with 24 subsets) after 10 iterations (right).

between the iterate x(k) and the solution x̂) of the simple and
proposed relaxed LALM’s when solving a LASSO regression
problem (in an equality-constrained form):

(x̂, û) ∈ arg min
x,u

{
1
2 ‖u− y‖22 + λ ‖x‖1

}
s.t. u = Ax ,

(12)
where A ∈ IR250×1000 is an i.i.d. Gaussian random matrix
with variance one, and y is a noisy projection (with noise
standard deviation 0.1) from a 50-sparse vector xtrue. The
regularization parameter λ is tuned (λ = 1) for the best recon-
struction. We set the relaxation parameter α to be two, which
is the theoretical upper limit of α. Note that when A is large
(for example, in the distributed LASSO regression problem),
inverting A′A requires a time-consuming matrix factorization
at the beginning, whereas computing the maximum eigenvalue
of A′A is cheaper [6]. Hence, it is reasonable to solve LASSO
regression using linearized algorithms.

As can be seen in Figure 1, the simple relaxation does not
provide much acceleration. In contrast, the proposed relaxation
accelerates convergence about twice (α-times). This behavior
is consistent with the convergence rate analysis of a closely
related relaxed primal-dual algorithm shown by Chambolle
and Pock [9, Theorem 2].

C. Relaxed OS-LALM for faster CT reconstruction
Consider the X-ray CT image reconstruction problem:

x̂ ∈ arg min
x∈Ω

{
1
2 ‖y −Ax‖2W + R(x)

}
, (13)

where A is the forward projection matrix of a CT scan, y
is the noisy sinogram, W is the statistical weighting matrix,
R denotes an edge-preserving regularizer, and Ω denotes a
box-constraint on the image x. To solve it using the proposed
relaxed LALM (11), we apply the following substitution:





A←W1/2A

y←W1/2y

h← R + ιΩ ,

(14)

where ιC denotes the characteristic function of a convex set
C. The image (x-)update now is a constrained diagonally
weighted denoising problem. We solve it by a single projected
gradient descent from x(k) (equivalently, further majorizing

the smooth regularizer R) and use Huber’s curvature of R
for the fastest convergence. We leave the convergence rate
analysis with further majorization as future work [10]. Since
the updates in (11) depend only on the gradients of L, we
can further accelerate it using OS. When α = 1, the proposed
algorithm is the same as the OS-LALM algorithm [4], and we
expect to see twice acceleration if we set α to be (close to)
two (α = 1.999 in the experiment).

We also use a continuation technique to speed up conver-
gence; that is, we decrease ρ gradually as iteration progresses
[4]. The difference between the proposed algorithm and the
previous OS-LALM in [4] is that we decrease ρ twice as fast
as the decreasing sequence ρk proposed in [4], i.e. ,

ρ̄k =





1, if k = 0

π
2(k+1)

√
1−

(
π

4(k+1)

)2

, otherwise .
(15)

The faster decreasing sequence ρ̄k comes from the fact that
LALM is accelerated by two-times with α ≈ 2 for any
fixed ρ empirically. When ρ changes every iteration (i.e.,
continuation), the AL penalty parameter ρ̄k of the relaxed
(OS-)LALM at the kth iteration should be the same as the
AL penalty parameter ρ2k of the original (OS-)LALM at the
(2k)th iteration, leading to the same instantaneous ρ at the
corresponding iterations.

III. RESULTS: 3D X-RAY CT IMAGE RECONSTRUCTION

This section reports numerical results for 3D X-ray CT
image reconstruction. We simulated an axial CT scan using a
1024×1024×154 XCAT phantom [11] for 500 mm transaxial
field-of-view (FOV), where ∆x = ∆y = 0.4883 mm and
∆z = 0.6250 mm. An 888 × 64 × 984 noisy (with Poisson
noise) sinogram is numerically generated with GE LightSpeed
fan-beam geometry corresponding to a monoenergetic source
at 70 keV with 105 incident photons per ray and no scatter. We
reconstructed a 512× 512× 90 image volume with a coarser
grid, where ∆x = ∆y = 0.9776 mm and ∆z = 0.6250
mm. We defined the statistical weighting matrix W as a
diagonal matrix with diagonal entries wj , exp(−yj). An
edge-preserving regularizer (based on a scaled Fair potential
function) is used with parameters set to achieve the best noise-
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Fig. 3: XCAT phantom: RMS differences between the reference reconstruction x? and the reconstructed image x(k) using
different algorithms as a function of iteration with (a) 12 subsets and (b) 24 subsets, where OS-FGM2 and OS-OGM2 are the
OS variants of the state-of-the-art fast gradient methods proposed in [7]. The dashed lines show the 1 HU RMS difference as
the stopping criteria, and the dash-dot lines show the convergence rate curves of OS-SQS [8].

resolution trade-off.

Figure 2 shows the cropped image from the central transax-
ial plane of the initial FBP image x(0), the reference re-
construction x?, and the reconstructed image x(10) using
the proposed algorithm (relaxed OS-LALM with 24 subsets)
after 10 iterations. There is no visible difference between the
reference reconstruction and our reconstruction. To analyze
the proposed algorithm quantitatively, Figure 3 shows the
RMS differences between the reference reconstruction x? and
the reconstructed image x(k) using different algorithms as a
function of iteration with 12 and 24 subsets, where OS-FGM2
and OS-OGM2 are the OS variants of the state-of-the-art fast
gradient methods proposed in [7]. As seen in Figure 3, the
proposed algorithm (cyan curves) is approximately twice as
fast as the unrelaxed OS-LALM (green curves) at least in
early iterations. Furthermore, comparing with OS-FGM2 and
OS-OGM2, the proposed algorithm converges faster and is
more stable when using more subsets for acceleration.

Trade-off between speed and stability always exists. Using
over-relaxation lets OS-LALM converge faster but might in-
troduce instability. For instance, the RMS difference of the
proposed algorithm with 24 subsets decreases slower than the
unrelaxed OS-LALM after 20 iterations. In practice, we do
not observe stability issues when using moderate numbers of
subsets for acceleration. Lastly, to ensure convergence, one
might sacrifice some speed by using smaller step size. As an
example, Chambolle and Pock showed that one has to shrink
the primal-dual step sizes according to the relaxation param-
eter to ensure convergence if further majorizing the smooth
term in the x-updates [9, Remark 6]. We also majorize the
smooth regularizer empirically when solving image updates
but did not have any convergence problem. This inspires our
convergence rate analysis as future work.

IV. CONCLUSION

In this paper, we proposed a non-trivial relaxed variant of
(OS-)LALM. Experimental results showed that our proposed
algorithm converges twice as fast as its unrelaxed counterpart.
Empirically, the method is reasonably stable when we use
moderate numbers of subsets. For future work, we will work
on the convergence rate analysis of the proposed algorithm
and evaluate the proposed algorithm using real CT scans.
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