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ABSTRACT

Resolving the 3-D structure of translucent objects is of fun-

damental interest in combustion research. Recent progress

in light-field imaging systems provides a single-shot, single-

access-point imaging tool for volumetric image reconstruc-

tion. However, when a translucent object being imaged has

low contrast edges, the conventional block-matching depth re-

construction algorithm used in commercial plenoptic cameras

performs poorly. To solve this problem, this paper investi-

gates reconstructing translucent objects using a model-based

image reconstruction (MBIR) method. Preliminary simula-

tion results illustrate that useful 3D object information can be

resolved using MBIR methods. However, severe z-direction
dispersion is observed in the reconstructed images due to the

limited angular variation of incident light rays.

1. INTRODUCTION

Resolving the instantaneous 3-D structure of translucent

objects such as mixing fuel sprays and flame fronts is of

considerable interest and has motivated various 3-D imag-

ing techniques. Early work on laser-sheet-based 3-D imaging

used phase-locked or time-averaged measurements and stacks

of images that were then rendered to yield averaged volumet-

ric data. Instantaneous measurements for scalar quantities

emerged, including techniques that simultaneously used mul-

tiple light sheets, a moving light sheet, and tomographic

methods. For velocity measurements, tomographic particle

image velocimetry (Tomo-PIV) [1] has been used with 4-6

cameras having independent fields of view and offers excel-

lent 3-D reconstruction of the flow field. However, demands

on calibration among cameras and optical access restrain the

practical application of Tomo-PIV. For example, technical

combustion applications, such as high-pressure gas turbine

combustors or internal combustion engines, substantially

limit optical access. Therefore, 3-D measurement techniques
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that need less optical access are important for combustion

research.

The emerging imaging technology using light-field imag-

ing systems such as the Lytro [2] and Raytrix [3] plenop-

tic cameras provides single-shot, single-access-point imag-

ing tools for instantaneous volumetric imaging. Such systems

can estimate 3-D flame chemiluminescence [4] and have been

applied to PIV [5]. However, even when using a simplified

(plenoptic 1.0) system model, the existing plenoptic-camera-

based PIV method [5] involved precomputing and storing an

enormous system matrix, making it computational intensive.

This paper considers a more realistic (plenoptic 2.0) system

model for sensors having lenslet arrays with multiple focal

distances [6], and proposes a practical approximation for effi-

cient on-the-fly computation. Furthermore, instead of simply

matching the forward model with the possibly inconsistent

measurements (due to noise and model mismatch), we re-

construct images using a model-based image reconstruction

(MBIR) method [7], in which one models the physics of the

imaging system, the statistics of the measurements, the prior

information about the object being imaged, and then finds the

best fitting object estimate by an iterative algorithm that min-

imizes a cost function related to those models.

2. IMAGING MODEL AND RECONSTRUCTION

A (lenslet-based) plenoptic camera consists of three parts: the

main lens, the micro-lens array, and image sensors. Unlike

conventional cameras, light rays entering a plenoptic camera

are re-directed by a set of micro-lenses (i.e., micro-lens array)

in the camera and then recorded by image sensors placed be-

hind the micro-lens array, generating unconventional image

data with embedded angular information of light rays.

Fig. 1 shows a 2-D schematic of a plenoptic camera. For

a point source p located at distance z from the main lens, the

main lens first forms a virtual object p′ in the camera, posi-

tioned at the distance z′ from the main lens, where, by the

thin-lens formula:
1

z
+

1

z′
=

1

F
, (1)

where F denotes the focal distance of the main lens. The

virtual object p′ can be either in front of the micro-lens array
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Fig. 1. 2-D schematic of a plenoptic camera.

(z′ < D) or behind the micro-lens array (z′ > D). The ith
micro-lens, with focal distance fi, then forms a second virtual

object p′′i at a distance ∆ from the micro-lens array, casting

an image of p′ on the image sensors located at the distance d
from the micro-lens array. The captured image data of p, i.e.,
the point spread function (PSF) of the unit point source p, is
the superposition of all micro-lens images.

Let h(u;x) denote the PSF of a unit point source located

at x = (x, y, z), where u = (u, v) is the image sensor coordi-

nates. The overall PSF is given by

h(u;x) =
∑

i

hi(u;x) , (2)

where hi denotes the ith micro-lens PSF image. When the

main lens and all micro-lenses have round apertures, hi is a

product of two (not necessarily aligned) disk functions, i.e.,

the image of p′ assuming open micro-lens aperture (the red

cone in Fig. 1) and maximum support of the image of p′ as-
suming open main lens aperture (the green cone in Fig. 1) [6].

To derive the discrete PSF, we simply parameterize both

the captured image and the object to be imaged with some ba-

sis functions (2-D rectangular function for square pixels and

3-D rectangular function for cubic voxels in our experiments),

and the discrete PSF can be represented as

h[k; l] ,

∫
(

∫

h(u;x) β1(l;x) dx

)

β2(k;u) du , (3)

where k = (ku, kv), l = (lx, ly, lz), and β1 and β2 denote the

voxel and pixel basis functions, respectively. For a translucent

object p[l], the image q[k] captured by the plenoptic camera

can be expressed as

q[k] =
∑

l

h[k; l] p[l] . (4)

A more compact matrix-vector multiplication form is

y = Ax , (5)

where y and x stack the entries of q[k] and p[l] into vectors,

and A is a matrix rearrangement of h[k; l].

2.1. Approximation of the system matrix

Although we have the closed-form expression (3) for each

element of A, computing of A is non-trivial. Due to the re-

direction of micro-lenses, h[k; l] is highly shift-variant, and

A is non-structured. Thus, one must precompute (or compute

on-the-fly) elements of the enormous (but sparse) A. Fur-

thermore, being a product of two disk functions, hi is non-

separable. This makes (3) non-separable, even with separable

and shift-invariant β1 and β2, leading to a time-consuming

5-D numerical integration for each element of A.

To reduce computation of A, we observed that for typical

experimental setups (fi ≈ d, and z is large enough),

∫∫

h(u;x) β1(l;x) dxdy (6)

is approximately the product of a sharp disk function and a

z-dependent blurred disk function that we precompute and

tabulate. Thus, one can avoid 2-D integration over x and y by

applying this approximation when computing elements of A.

2.2. Tomographic image reconstruction

Having defined the system matrix A, we reconstruct the ob-

ject being imaged x from the captured image data y by solv-

ing the following regularized least-squares problem with a

non-negativity constraint:

x̂ ∈ argmin
x�0

{

1

2
‖y − Ax‖

2

2
+ R(x)

}

, (7)

where R denotes an edge-preserving regularizer that penalizes

the roughness of the reconstructed image x.

In our simulation experiments, we used a “corner-rounded”

anisotropic total-variation (TV) regularizer R that encourages

x to be piece-wise smooth. To solve the minimization prob-

lem (7), we used the fast iterative shrinkage/thresholding

algorithm (FISTA) [8]:











xk+1 =
[

zk − 1

L
(A′ (Azk − y) + ∇R(zk))

]

+

θk+1 =
(

1 +
√

1 + 4θ2
k

)

/2

zk+1 = xk+1 + θk−1

θk+1
(xk+1 − xk) ,

(8)

where L is the maximum eigenvalue of A′A, z0 = x0 is

the zero initial image, θ0 = 1, and [·]+ denotes the operator

that clips all negative values of the input vector. For faster

convergence, we applied an adaptive restart scheme [9].

3. SIMULATION EXPERIMENTS

To illustrate the feasibility of translucent object reconstruc-

tion by solving (7), we performed some preliminary simu-

lations of 3-D image reconstruction using a plenoptic cam-

era. Fig. 2 shows the setup of our numerical simulation. A

50 × 50 × 50 [mm3] image volume is placed at 700 [mm]
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Fig. 2. Setup of the numerical simulation.

Fig. 3. Torch phantom used in the simulation.

in front of our simulated plenoptic camera, where the main

lens radius is 31.02 [mm] with focal length F = 0.35 [mm],

the distance between the main lens and the micro-lens array

is D = 91.5 [mm], and the distance between the micro-lens

array and the image sensor is d = 0.4 [mm]. Our simulation

used a hexagonal micro-lens array where each micro-lens has

radius 0.135 [mm] and focal length fi = 0.35 [mm]. For ef-

ficient simulation, the image size of the simulated plenoptic

camera is 850 × 850, and we discretized the image volume

into 100 × 100 × 100 isotropic cubic voxels.

Fig. 3 illustrates a torch phantom consisting of three el-

lipsoids with uniform intensity 10. The angle between each

ellipsoid and the optical path is 45◦. Fig. 4 shows the im-

age captured by the simulated plenoptic camera with addi-

tive Gaussian noise (standard deviation 0.1), where the peak
value of the noiseless image is about 2.15. To avoid an “in-

verse crime,” we generated the simulated image using a high-

resolution torch phantom with finer voxel sizes (0.5× in each

dimension). We ran 500 iterations of (8) to reconstruct the

torch phantom. The system matrix A was precomputed and

stored in memory as a sparse matrix. Since we used the PSF

approximation mentioned in Section 2.1, we expected greater

model mismatch in the transaxial plane. Hence, we regularize

the image roughness more transaxially.

Fig. 5 shows the reconstructed images (with isosurface
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Fig. 4. The image captured by the simulated plenoptic camera

in the noisy condition.

threshold 2) for noiseless and noisy conditions. The recon-

structed images recovered the geometry (e.g., the angular in-

formation) of the phantom but showed strong dispersion in

the z-direction. To illustrate the effect of dispersion, Fig. 6

shows x − z slices of the phantom and reconstructed images

at y ≈ 0 [mm]. The reconstructed images have much smaller

intensity than the phantom. Fig. 7 shows the projections of

the image slices shown in Fig. 6. These projections match

very well (the non-zero bias in the noisy reconstruction might

come from the non-zero mean of non-negative clipped noise),

implying that the reconstructed images are dispersed in the

z-direction. Finally, due to the z-dependent dispersion, the
angles between the reconstructed lobes and the optical path

appear somewhat smaller than 45◦. In fact, due to the limited

angular variation of incident light rays, the reconstructed im-

ages have poor depth resolution, as in digital tomosynthesis

imaging [10–12].

4. CONCLUSIONS

This paper considered resolving the 3-D structure of translu-

cent objects from image data captured by a lenslet-based

plenoptic camera using a model-based image reconstruction

method. Preliminary simulation results showed that one can

roughly resolve the 3-D structure of an object being imaged;

however, the reconstructed image suffers from severe disper-

sion in the z-direction. To overcome this problem, we can

either use anisotropic cubic voxels (longer in the z-direction)
or encourage some form of sparsity of the reconstructed im-

age, leading to a more sophisticated cost function with a

non-smooth regularization term. As future work, we will

study the above modifications, investigate using a micro-lens

array with multiple focal distances, and reconstruct image

volumes from real plenoptic camera data.
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Fig. 6. Slices of the phantom and reconstructed images at y ≈ 0 [mm].

(a)

(b)

Fig. 5. The reconstructed images (with isosurface threshold

2) in the (a) noiseless and (b) noisy conditions.
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Fig. 7. Projections of the image slices showing in Fig. 6.
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