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Abstract—Model-based image reconstruction (MBIR) methods
for X-ray CT reconstruction can improve image quality and
reduce patient X-ray dose. These methods produce images
by solving high-dimensional, statistically motivated numerical
optimization problems, but unfortunately the high computational
costs of solving these problems have kept MBIR algorithms from
reaching ubiquity in the clinic. In this paper, we present an X-ray
CT image reconstruction algorithm that uses duality and group
coordinate ascent to alternately perform efficient tomography
and denoising updates. The algorithm can handle non-smooth
regularizers like anisotropic total variation (TV) and stores only
two image-sized vectors on the GPU. Preliminary experiments
show the algorithm converges very quickly in time.

I. INTRODUCTION

Consider the following model-based X-ray image recon-
struction (MBIR) problem:1

bx = argmin
x

L(Ax) + R(Cx) (1)

with X-ray CT system matrix A, 3D finite differencing matrix
C, log-likelihood data-fit term L and edge-preserving regular-
izer R. Both L and R are separable sums of convex functions:

L(Ax) =
MX

i=1

li([Ax]i) R(Cx) =

NdX

k=1

rk([Cx]k). (2)

A common choice [14] for the data-fit term L is the Gaussian-
inspired quadratic term L(Ax) = 1

2 ||Ax� y||2W with noisy
measurements y and diagonal matrix of positive statistical
weights W. The edge-preserving regularizer is conventionally
a weighted sum of nonquadratically penalized finite differ-
ences,

rk = �k ([Cx]k) = �k (xk1 � xk2), (3)

with convex  and �k > 0. This includes anisotropic total
variation (TV) and many other noise-reducing regularizers.

The image bx produced by solving (1) can be higher-
quality than images produced with conventional filtered-
backprojection methods, and MBIR algorithms can produce
diagnostically-useful images at lower doses than conventional
CT reconstruction algorithms. Unfortunately, solving MBIR’s
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1This paper describes this simpler problem without a nonnegativity con-
straint [14], but the method presented be easily extended to accommodate
one.

optimization problem is computationally challenging and time-
consuming, especially compared with conventional methods.
New algorithms, distributed computing, and highly parallel
hardware may provide a solution to making MBIR’s advan-
tages ubiquitous in the clinic. In this paper we focus on the
first and last of these approaches, and propose a technique that
combines the high parallelism available in modern graphics
processing units (GPUs) with structure-exploiting algorithms
to rapidly solve the MBIR optimization problem (1).

The next section presents the mathematical framework for
the proposed algorithm, and Section III describes its imple-
mentation on the GPU. Section IV contains some experimental
results, and Section V has some concluding remarks.

II. ALGORITHM FRAMEWORK

Let x(n) 2 RN be an estimate of bx. Customarily, x(0), the
initial image, is generated using a fast filtered backprojection
method. The algorithm presented in this paper has two steps
that it alternates between until convergence:

• identify an update d(n) to x(n); and then
• apply the update, generating x(n+1) = x(n) + d(n).

We perform the first step by approximately solving the fol-
lowing optimization problem:

d(n) = argmin
d

L
⇣
Ax(n) + Ad

⌘
+ R

⇣
Cx(n) + Cd

⌘

+
✏

2
||d||22,

(4)

with ✏ > 0. Solving (4) is nearly as challenging as solving the
original optimization problem (1), but the additional ✏

2 ||·||22
term allows us to use the following duality-based approach.

A. Duality approach

Let L⇤ and R⇤ be the convex conjugates [2, pg. 91] of L
and R, respectively:

L⇤(u) =
MX

i=1

l⇤i (ui), R⇤(v) =

NdX

k=1

r⇤k(vk), (5)

where l⇤i are r⇤k are the convex conjugates of li and rk,
respectively. Rewrite (4) using the biconjugate property of the
convex functions L and R:

d(n) = argmin
d

max
u,v

u|A
⇣
x(n) + d

⌘
+ v|C

⇣
x(n) + d

⌘

�L⇤(u)� R⇤(v) +
✏

2
||d||22.

(6)
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After swapping the order of the “min” and the “max” in (6),
we can easily solve for the update d(n) in terms of u and v:

d(n)(u,v) = �1

✏
(A|u + C|v). (7)

Plug (7) back into (6) to produce the dual problem:

u(n),v(n) = argmax
u,v

D(n)(u,v), where (8)

D(n)(u,v),�L⇤(u)� R⇤(v) + u|Ax(n)

+v|Cx(n) � 1

2✏
||A|u + C|v||22.

(9)

We approximately solve (8) with a coordinate ascent method
that is similar to stochastic dual coordinate ascent (SDCA)
[12]. In each of Ninner inner iterations, we

• randomly choose a group of elements of either u or v;
and

• holding all other variables constant, update the se-
lected group of variables to increase the dual function
D(n)(u,v).

This inner procedure is a simple, convergent group coordinate
ascent algorithm. We call optimizations over elements of u
“tomography updates” and over the elements of v “denoising
updates.” The next two subsections describe how to perform
these updates.

B. Tomography updates

In [9], the authors found that a duality-based proximal
technique can efficiently solve quadratic problems involving
the CT system matrix A. In 3D CT these problems are
challenging to solve in the primal domain without ordered
subsets (OS) approximations [1], and unlike OS, the duality-
based approach is convergent. We use this approach here.

We update one view of u at a time, written u� . The cor-
responding CT projection operator, noisy data, and statistical
weights are A� , y� and W� , respectively. Tomography terms
unrelated to u� are indicated using the subscript “\�”, e.g.,
u\� .

Holding all variables other than u� constant, we want to
find u+

� such that

D(n)
⇣
u+
� ,u\� ,v

⌘
� D(n)

�
u� ,u\� ,v

�
, (10)

then update u�  u+
� in place. We find u+

� as the maximizer
of the minorizing surrogate function S� for D(n):

u+
� = argmax

u�

S�

⇣
u� ;u,v,x(n)

⌘
, where (11)

S�

⇣
u+
� ;u,v,x(n)

⌘
= �L⇤

�

⇣
u+
�

⌘
� 1

2

���
���u+

� � u�

���
���
2

M�

+
⇣
u+
�

⌘|
A�

⇣
x(n) + d(n)(u,v)

⌘ (12)

Updating u+
� in this way will increase the dual function D(n)

if M� ⌫ A�A
|
� , i.e., if all the eigenvalues of M� �A�A

|
�

are nonnegative. Finding the “tightest” so-called majorizer for
A�A

|
� is challenging, but the following diagonal matrix is

relatively efficient to compute and useful in practice [1]:

M� = diag
i

nh
A�A

|
�1

i
i

o
. (13)

(a) |Cd| (b) |CdC
|
d|

Fig. 1: Absolute values of entries of Cd and CdC
|
d matrices.

Only adjacent elements are coupled by CdC
|
d . Black entries

are zero.

These M� depend only on A (i.e., they are independent of
any patient data) so they can be precomputed. Storing M� for
all � takes the same amount of memory as the projection data
y.

When L(Ax) = 1
2 ||Ax� y||2W, the update (11) is

u+
� = u� + ✏W�(✏I + W�M�)

�1

⇣
A�

⇣
x(n) + d(n)(u,v)

⌘
� y� � u�

⌘
.

(14)

The major computational costs of implementing (14) are the
one-view forward projection (A�), a series of diagonal oper-
ations, and a one-view backprojection to update d(n)(u,v).

C. Denoising updates

The regularizer R couples neighboring pixels together
through the finite differencing matrix C. We previously ex-
ploited this property to update groups of pixels from different
neighborhoods simultaneously, resulting in a fast denoising
algorithm [10]. The dual function D(n) (9) has a similar
structure as a function of v. Let D be the number of directions
along which R penalizes voxel differences (e.g., horizontal,
vertical, axial, etc.); we write v = [v|

1 · · ·v|
D]

|. Because R⇤

is separable (5), the only coupling between different elements
of v comes from the quadratic term:

||A|u + C|v||2 =

2
64

v1

...
vD

3
75

| 2
64

C1C
|
1 . . . C1C

|
D

...
. . .

...
CDC|

1 . . . CDC|
D

3
75

2
64

v1

...
vD

3
75

+2v|CA|u + c(u),
(15)

where each Cd is a banded upper triangular finite differencing
matrix in a single direction with 1s along the diagonal and �1s
along an upper band.

Consider optimizing over one “direction” of differences at
a time; i.e., hold all variables except one vd constant. The
entries of vd are coupled in the dual function by CdC

|
d .

Figure 1 illustrates an example of CdC
|
d : only differences that

are adjacent to one another along the dth direction are coupled
by CdC

|
d . For example, if d corresponds to the horizontal

direction, then the only elements of vd coupled by CdC
|
d are

those horizontally adjacent to one another. If we first optimize
over the “even” entries of vd, and then optimize over the
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“odd” entries of vd, each of these half-vd optimizations will be
over decoupled variables. Consequently, they can be performed
independently and in parallel.

Let vg be one such half-vd group and Cg be the matrix
of corresponding rows from Cd. We find the updated v+

g by
maximizing the following separable surrogate for D(n):

v+
g = argmax

vg

Sg

⇣
vg;u,v,x(n)

⌘
, (16)

Sg

⇣
v+

g ;u,v,x(n)
⌘

=
X

v+
k 2vg

sk

⇣
v+

k ;u,v,x(n)
⌘
, (17)

sk

⇣
v+

k ;u,v,x(n)
⌘

= v+
k

h
Cg

⇣
x(n) + d(n)(u,v)

⌘i
k

�r⇤k
�
v+

k

�
� 1

2✏
||Cgek||2

�
v+

k � vk

�2
,

(18)

where ek is the kth elementary basis vector.
If the dual function r⇤k has a convenient closed form, then

the elements of v+
g can be computed from (18). While this is

true for the absolute value and quadratic potential functions
this is often not the case. Instead, if the potential function  
has a closed form shrinkage function, we maximize (18) by
again invoking duality:

v+
k = vk +

✏

2
(qk � zk), (19)

qk =
h
Cg

⇣
x(n) + d(n)(u,v)

⌘i
k
, (20)

zk = argmin
z

✏

4

✓
z �

✓
qk +

2

✏
vk

◆◆2

+ rk(z). (21)

This approach is more convenient for the many potential func-
tions with closed-form shrinkage operators but complicated
dual functions, such as the Fair potential [7].

III. GPU IMPLEMENTATION

Memory is a scarce resource on the GPU, and transfers
between the GPU’s on-board memory and the host computer’s
memory are relatively expensive. For reasonably-sized prob-
lems, some data will need to be transferred between the host
and the GPU. It is up to the algorithm designer to decide what
data should remain on the GPU, what data can be transferred
between the GPU and the host, and how to hide the latency
of these transfers (normally by simultaneously performing
computations on the GPU). A naı̈ve design (e.g., the split-
Bregman algorithm [4] in [10]) can be unacceptably slow due
to data transfer delays.

We implemented the algorithm in this paper by storing two
image-sized vectors on the GPU:

• a vector g reflecting the current value of x(n+1) if the
inner iterations were terminated (cf., (7))

g = x(n) + d(n)(u,v) = x(n) � 1

✏
(A|u + C|v),

• and a vector to store vd when updating a group of the
regularizer dual variables.

We hide the latency of transferring vd to and from the GPU
by performing tomography updates (14) between starting the
transfer of vd to the GPU, updating vd, and transferring vd

back to the host. See Figure 2.

Loop Ninner times:
1) Choose regularizer direction d at random, and en-

queue transfer of vd to GPU.
2) Perform Ntomo tomography updates with randomly

selected views.
3) Update vd, then begin transfer of vd back to the

host computer.
4) Perform Ntomo tomography updates with randomly

selected views.

Fig. 2: Implementation of algorithm inner loop that hides
the cost of transferring vd by interleaving transfers with
tomography updates.

After Ninner iterations, we update x(n). A simple way to do
this is by simply setting the buffers storing v and u to zero!
This restarts the update search problem (4) from d = 0, and
the GPU vector g is equal to x(n+1). However, we find it
useful to “warm-start” the next update search with the current
values of u(n) and v(n). Consequently, we must also update
g:

g x(n+1) � 1

✏

⇣
A|u(n) + C|v(n)

⌘
= g +

⇣
g � x(n)

⌘
.

(22)
IV. EXPERIMENTS

We reconstructed a simulated XCAT axial phantom [11]
(Figure 3) and a helical shoulder scan with real patient data
(Figure 4). In addition to the algorithm proposed in this paper,
we reconstructed each image with

• OS-SQS: ordered subsets with separable quadratic surro-
gates [1],

• OS-SQS-FGM: OS-SQS with Nesterov’s acceleration [6],
and

• OS-SQS-OGM: OS-SQS with optimized gradient
steps [5].

All OS algorithms used 12 subsets.
All algorithms were implemented in OpenCL and C and run

on an aging NVIDIA GTX 480 with 2.5 GB of memory. For
the OS algorithms, the data y and statistical weights W were
transferred view-by-view to the GPU as required, but all other
variables were stored on the GPU.

We used the Fair potential function

 Fair(t) = �2(|t/�| � log (1 + |t/�|)), (23)

with � = 10 HU, which has a closed-form shrinkage operator,
to penalize all 26 neighboring voxel differences. We used the
separable footprints CT system model [8].

We chose the parameter ✏ to be the mean of the diagonal
entries of MW, where M is the diagonal majorizer used in
the tomography update (13). We set Ninner = Nview/120 and
Ntomo = 5 for both experiments.

Figures 3c and 4c show the root mean squared difference
(RMSD) over a region of interest between the current iterate
of each algorithm for the axial phantom and shoulder cases,
respectively. The proposed algorithm converges very quickly
in time. Markers are placed every 5 iterations.
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(a) Initial image (b) Reference

(c) RMSD v.s. Time

Fig. 3: Center slice (Fig. 3a) and converged reference (Fig. 3b) from axial phantom experiment, clipped to a 800 - 1200
modified HU window (with water at 0 HU). The proposed method converges quickly in time.

(a) Initial image (b) Reference

(c) RMSD v.s. Time

Fig. 4: Center slice (Fig. 3a) and converged reference (Fig. 3b) from axial phantom experiment, clipped to a 800 - 1200 modified
HU window (with water at 0 HU). The proposed method is within 5 HU RMSD of the reference in under 10 minutes.

V. CONCLUSIONS AND FUTURE WORK

The duality-based algorithm in this paper appears to con-
verge quickly, can handle a wide variety of edge-preserving
regularizers, and can be efficiently implemented on the GPU.
Similar to other algorithms like ASD-POCS [13] and variable
splitting methods, the proposed algorithm alternates between
tomography and denoising updates. If the update direction
d(n) is solved for exactly (4), then the proposed algorithm
is convergent, but much slower than the experimental results
shown. We suspect that the algorithm with inexact updates as
implemented in this paper is convergent under ADMM-like
conditions [3], but leave that result for future work.

Future work will also explore multiple-GPU implementa-
tions of the proposed algorithm.
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