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ABSTRACT

In the last decade, terahertz-mode imaging has received increased attention for non-destructive testing applica-
tions due to its ability to penetrate many materials while maintaining a small wavelength. This paper describes
a model-based reconstruction algorithm that is able to image defects in the spray-on foam insulation (SOFI)
used in aerospace applications that has been sprayed on a reflective metal hull. In this situation, X-ray based
imaging is infeasible since only one side of the hull is accessible in flight.

This paper models the object as a grid of materials, each section of which has a constant index of refraction.
The delay between the transmission and reception of a THz pulse is related to the integral of the index of
refraction along the pulse’s path, and we adapt computed tomography (CT) methods to reconstruct an image
of an object’s index of refraction.

We present the results of our reconstruction method using real data of the timing of THz pulses passing
through a block of SOFI with holes of a known location and radius. The resulting image of the block has a low
level of noise, but contains artifacts due to the limited angular range of one-sided imaging and due to the narrow
beam approximation used in the forward model.

Keywords: Inverse problems, Model-based imaging, Nondestructive testing and evaluation, Computed tomog-
raphy, Terahertz imaging

1. INTRODUCTION

1.1 Terahertz Imaging

Terahertz-mode imaging is a relatively new technique that has become more accessible due to advances in
both ultrafast lasers and optoelectronics1,2 that provide the ability to generate and detect single-cycle terahertz
pulses. Terahertz imaging is increasingly used for applications including the non-destructive evaluation (NDE)
of thermal protection systems for aerospace applications, such as the spray-on foam insulation (SOFI) used by
NASA on the exterior of the Space Shuttle. In this situation, other common NDE methods may be unfeasible;
for example, X-ray CT imaging or other terahertz CT methods3 would require access to both sides of the SOFI.
Terahertz imaging also brings advantages other than this flexibility; the high frequency of terahertz provides a
resolution that other RF reflectometry methods are unable to achieve. In addition, the physical imaging system
is easy to use, works at a high speed, and can generate and detect pulses synchronously at a high signal-to-noise
ratio. Ultrafast terahertz pulses are wideband, allowing wideband spectral analysis of an object; however, in our
application we note that the index of refraction of SOFI does not change appreciably over this band.

In our specific application, we have physical access to only one side of the SOFI, but behind the SOFI is a
metal reflecting plane. Previous one-sided terahertz imaging methods have used pulses to capture single reflective
views in a method similar to an ultrasound B-scan.4 This method is limited to imaging laminar structures that
present clear specular reflections from each interface. Additionally, features may lie in the shadow of an existing
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defect that scatters terahertz radiation. Another method has been developed that models the object under
consideration as a grid of reflective points, and the reflection is measured at an array of angles.5,6 This method
is able to image interfaces other than those that present a specular reflection. Since SOFI has a low index of
refraction, the contrast using this model is low. The specific features that our system is designed to image are
holes in the foam, which may be caused by impact from debris or manufacturing defects. These voids will have
a lower index of refraction than the SOFI.

This paper describes a system for reconstructing 2D images of the index of refraction of a region with a
reflective plane behind it by applying model-based image reconstruction (MBIR) techniques. In general, MBIR
is a class of image reconstruction techniques that use model the observed data as a function of underlying image
data and estimate the image from the observed data by solving an inverse problem. MBIR methods have been
used for many imaging modalities such as CT7,8 and MRI9,10 to improve artifact and noise properties relative
to traditional image reconstruction methods.

In this case, we model the expected time-of-flight of terahertz pulses given an object’s index of refraction
as a function of space, using a system model similar to that used in computed tomography (CT) problems; we
then invert the model to find the index of refraction image. Figure 1 shows the experimental setup. Our data
aquisition apparatus relies on a transmitter and receiver moving to acquire data at multiple angles. However, it
is clear from the setup that the transmitter and receiver are physically limited to a somewhat narrow angular
range, on one end by the foam itself and on the other end by each other. These limitations of the acquisition
correspond to a severely limited-angle CT; traditional CT reconstruction algorithms fare poorly in this condition,
whereas MBIR is more promising.11,12

Figure 1. Experimental setup.

Section 2 describes the model we use, shows how this model reduces the image reconstruction problem to a
convex optimization problem, and specifies how we perform this optimization. It also describes the apparatus
used to collect the data. Section 3 describes how we preprocess the raw data, consisting of time-series received
pulses, into time-of-flight data to reconstruct using the methods of Section 2. Section 4 demonstrates the results
of our methods using real data collected from SOFI with known holes drilled into it.

2. METHODS

2.1 Model

Our model approximates the index of refraction of an object as a function of space, n(~x), by the weighted sum
of several basis functions Rj(~x), j = 1, . . . , Npixel:

n(~x) =

Npixel∑
j=1

njRj(~x).

This allows us to represent the (unknown) index of refraction image as a finite-dimensional vector n. The basis
functions we use are square pixels with edge size ∆ and centers ~xj :

Rj(~x) = rect2

(
~x− ~xj

∆

)
,
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where rect2(~x) = 1{x1∈[−1/2,1/2]}1{x2∈[−1/2,1/2]}. The ith recorded measurement Ti is related to the travel time
of a pulse along a path Pi, i = 1, . . . , Npulse. We assume that the effect of refraction is negligible, that is, that
the paths Pi that pulses travel along can be determined in advance and are not affected by n(~x). Since SOFI has
a low n, this approximation is acceptable. The time it takes a pulse to travel along Pi is given by the integrated
delay of the wave propagation:

Ti =

∫
Pi

n(~x)

c
d~x =

∑
j

nj
c

(∫
Pi
Rj(~x) d~x

)
. (1)

Defining the path length of Pi through a pixel Rj , divided by c, as aij :

aij ,
1

c

∫
Pi
Rj(~x) d~x,

then (1) becomes the matrix equation
T = An,

where A ∈ RNpulse×Npixel represents a system matrix.

In practice we do not observe time delays Ti directly, but Ti shifted by an unknown offset k that depends on
the angle of the observation, θi. Therefore, we define our model for a delay observation yi to be:

yi =

Npixel∑
j=1

aijnj

+ k(θi) + εi, (2)

The noise added to the ith observation, εi, is assumed to be normally distributed and that each observation’s
noise is identically distributed and independent, so that the covariance matrix of ε is σ2I. The model can be
written in a matrix form:

y = An+Kk + ε, (3)

where k is a vectorization of k(θi) which has a number of elements equal to the number of observation angles
Nθ, and K ∈ RNpulse×Nθ is a matrix that expands k into the number of observations; [K]im = 1 if observation i
is taken at the angle corresponding to km and otherwise zero.

The addition ofKk into the model introduces limitations in the reconstruction. For any image n that consists

of lines of constant n perpendicular to the reflecting backplane, there exists a vector k such that
[
nT kT

]T
is in the nullspace of

[
A K

]
, and so the model cannot discern between these features and an offset in k. In

particular, adding a constant to n becomes undetectable, so the reconstruction can at best produce images of n
up to an unknown constant shift. For our imaging goals, however, this is not a significant limitation.

2.2 Regularization

Since (3) is an underdetermined system, we cannot solve for an image n from observations y without adding
other prior information. Therefore, we add a prior assumption that larger differences between neighboring pixels
are more improbable than smaller ones. We define a differencing matrix C ∈ RNdiff×Npixel such that for an image
n, Cn is a vector containing the difference between each neighboring∗ pair of pixels in n. Our regularizer is
defined as

R(x) =

Ndiff∑
k=1

ψ([Cx]k), (4)

where ψ is a Huber function, which is quadratic until a cutoff point, at which the function becomes linear:

ψ(x) =

{
x2/2, |x| ≤ δ
δ|x| − δ2/2, |x| > δ.

(5)

∗We use the definition of a pixel’s “neighbors” as the four that touch it on an edge, but other choices could be made,
such as including the four that touch it on a corner, or even larger “neighborhoods”.
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The cutoff point δ is a parameter of the reconstruction. Lower values of δ are better at preserving edges in the
reconstruction, but the reconstruction algorithm will take more iterations to converge. The “units” of δ are the
same as the “units” of n, a unitless index of refraction. To preserve the edge between regions with a difference
in index of refraction of ∆n, one might set δ to be approximately ∆n/10. In our reconstructions, δ = 10−4.

2.3 Reconstruction

Using this regularizer, we reconstruct the index of refraction image n and simultaniously estimate the nuisance
delay parameter k by finding the minimizer of the following cost function:

n̂, k̂ = argminn,k Ψ(n,k)

Ψ(n,k) ,
1

2
||y −An−Kk||22 + βR(n). (6)

Since Ψ is a convex function, it has a unique minimizer. Of the many possible algorithms for performing
minimization, we used a preconditioned conjugate gradient algorithm.13

2.4 Implementation

Computation of the product An requires computation of each matrix element aij , which is not straightforward.
However, we leverage existing algorithms for CT projection to accomplish this computation. If there were no
reflective backing, and the transmitter simply sent a pulse through an object, non-refracted, directly to a receiver
that measured the pulse’s time-of-flight, then the system would be measuring line integrals of n along straight
paths through the object. Model-based reconstruction for CT already relies on algorithms for computing these
straight-line integrals, or projections, of the image. If we define our coordinate system such that the reflector is
at the line x2 = 0 and the object is in the region where x2 > 0, we can define an operator R that duplicates a
reflection of the image n(~x) behind the reflector:

(Rn)(x1, x2) = n(x1, |x2|)

We can then compute the system matrix as:

aij =
1

c

∫
RPi

(RRj)(~x) d~x,

where RPi is the path Pi with one half (either half is equivalent) reflected across the reflective surface. When
defined this way, A is simply a CT system matrix. Figure 2 shows the effect of R on the regions Rj and its
straightening of the path Pi.

Pi

Rj

RPi

RRj

RRj

Figure 2. Reflection R of Rj and Pi.
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2.5 Experimental Apparatus

Figure 1 shows a diagram of the experimental apparatus used to collect data, and Figure 3 shows a picture of the
apparatus. It consists of a terahertz transmitter and receiver mounted together with a scissoring mechanism that
keeps them both at the same angle (denoted θ on Figure 1) relative to a center line that is kept perpendicular to
the reflective backing. The sample moves with respect to the transmitter and receiver heads on a linear gantry
parallel to the reflective backing. To collect the pulse data, the scissor mechanism fixes the heads at a given
angle and then the gantry moves continuously, transmitting pulses at a fixed rate. As shown in Figure 1, each
pulse travels through the dielectric SOFI, reflects off the metal backing, and travels through the dielectric again.
After the sample traverses along the gantry once at a given angle, the heads increase their angle by ∆θ and
the sample traverses again. After the data for Nθ angles is collected, the scan is complete; the apparatus has
collected a received pulse at each angle and each linear offset location.

Figure 3. Picture of experimental apparatus.

3. DATA PROCESSING

3.1 Peak Finding

The output of the experimental apparatus is not delays, but discrete-time measured pulses xi[n], n = 0, . . . , 4095.
If we have a reference pulse r[n], to find the delay between the reference pulse and a measured pulse x[n], we
find the delay d that maximizes a fit function

Φ(d; r, x) =
∑
n

x[n](D(d)r)[n],

where D(d) is an operator that delays a pulse (shifts it forward in time) by d samples. Since we would like to be
able to resolve the value of d to a precision less than the size of a time step, we use the discrete Fourier transform
of r to define its non-integer shift. If R[k] is the DFT of r, the DFT of r shifted forward in time by d samples is:

Rd[k] = R[k] exp(−j2πkd/N),

and the inverse Fourier transform of Rd[k] is D(d)r. Since x[n] is real, we use the Plancherel theorem to quickly
compute Φ using X[k], the DFT of x:

Φ(d; r, x) ∝
∑
k

X∗[k]Rd[k] =
∑
k

X∗[k]R[k] exp(−j2πkd/N).

To find the delay d that maximizes Φ, we first find Φ for each integral d from the inverse DFT of X∗[k]R[k].
Define dimax to be the integral d that maximizes Φ. We maximize Φ for non-integral d by performing a binary
search to find a zero in its derivative in the interval [dimax − 1, dimax + 1].
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3.2 Determining a Reference Pulse

We find the reference pulse r from pulses measured with no object present. We make the assumption that, for
a fixed angle, the no-object (or “blank”) pulse should be the same regardless of the translation position, except
for a delay. We assume that this delay for a particular angle θ and translation position s, which we define dθ,s,
is intrinsic to the acquisition mechanism, and will remain constant between the data aquisition for no object
present and with an object.

Define the blank pulse at an angle θ and translation position s as bθ,s[n]. First, we find the average of all Ns
blank pulses for a given angle, which we define

b̄θ[n] =
1

Ns

∑
s

bθ,s[n].

Since the delay for changing translation position is small, this average is an estimate of the reference pulse but
will be blurred. We then estimate the intrinsic delay dθ,s for each s as

dθ,s = argmind Φ(d; bθ,s, b̄θ)

and using these delays, form our reference pulse rθ[n] for an angle θ:

rθ =
1

Ns

∑
s

D(dθ,s)bθ,s.

Since the pulses are now aligned before being averaged, our reference pulse will be sharper for the object scan
data.

3.3 Processing the Scanned Object

With a reference pulse determined, we process the data acquired with an object present. Define pθ,s[n] to be the
pulse measured at angle θ and translation s, with an object present. The delay of this pulse, which we define
yθ,s, can be found as:

yθ,s = dθ,s + argmind Φ(d; rθ, pθ,s).

We assemble all measurements yθ,s into an observation vector y and proceed with reconstruction from (3).

4. RESULTS

To evaluate our methods, we acquired data using several blocks of SOFI with holes drilled in them. In all tests,
the block of SOFI was 76.2mm thick and the holes drilled through it had a diameter of 19.05mm. The gantry
moved continuously and pulsed the transmitter every 0.01 seconds; each 10 pulses were binned together and
averaged in lateral steps of ∆s = 1mm. The collected angles of incidence θ ranged from 10 to 50 degrees in
∆θ = 2 degree increments. The time sampling interval of the receiver was 78.125 femtoseconds.

The reconstruction was made with a pixel size of ∆ = 2.5mm, a regularization parameter of β = 29, a Huber
cutoff of δ = 10−4, and 500 iterations of our preconditioned conjugate gradient algorithm.

There were two series of acquisitions: in the first, the block only had one hole drilled in it. We acquired data
with the hole in three positions; once in the center (38.1mm from the reflector), once translated 15mm toward
the front of the block (53.1mm from the reflector), and once translated 15mm toward the back (23.1mm from
the reflector). Figure 4 shows the delays produced when the hole is in the center of the block; the pulse speed-up
caused by both the hole and its reflection are visible at each angle. Figure 5 shows the images produced from
these acquisitions. In the second series of acquisitions, two holes were drilled in the SOFI, placed with their
centers 40mm and 30mm apart, respectively, to determine how close two features can be placed while resolving
them. The hole separation was parallel to the reflecting plane, both holes were centered in the depth axis,
38.1mm from the reflector. Figure 6 shows the images produced with two holes. The material used had an index
of refraction separately measured as 1.016.
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Figure 4. Centered hole delays.
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Figure 5. Reconstruction of one-hole images; (top) with hole 15mm toward front, (center) with hole centered, (bottom)
with hole 15mm toward back.
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5. CONCLUSIONS

The methods presented work successfully to image large defects in SOFI, with the major artefacts in the recon-
structed images being the blurry edges of the holes and the artifactual region of high index of refraction between
two holes. We believe that the blurry edges of the holes are a result of the width (perpendicular to its direction
of travel) of the terahertz pulse. We attempted to reconstruct the images with a simple model that accounts for
this pulse width, but it did not improve the images compared to the described model that uses zero pulse width.
We are unsure of the origin of the artifacts between the holes.

As mentioned when describing our model, the presence of the Kk term improves the quality of the recon-
struction at the expense of rendering certain effects not reconstructable. Figure 7 shows the reconstruction of
the center hole (as in the middle subfigure of Figure 5) without this correction term. For our application, this
notably includes a constant term over the image, meaning that our images are of index of refraction minus a
constant, which is reflected in the scale of the images. The reconstruction correctly estimates that the SOFI has
an index of refraction approximately 0.015 greater than than of air, but does not estimate the actual index of
refraction. Secondly, our model cannot find the front of the SOFI block if it is parallel to the reflecting plane,
which it was in our experiments. We assume that in practice, the nominal depth of the SOFI is known, and in our
reconstructions we limit the depth of the reconstruction to the depth of the SOFI to eliminate this concern. Even
with the depth of the SOFI known, the constant term in the images cannot be corrected. More concerningly, a
gap of air in the SOFI that is large in the direction parallel to the reflector but small in the opposing direction
may be weakly detectable; however, this is a great situation for scattering terahertz tomography, which could
complement our index of refraction tomography.

This method could be extended to 3D tomography by applying the data collection in several parallel planes
and then simultaniously minimizing the data-fit penalty in each plane and a 3D regularizer. This would likely
produce better 3D images than ones constructed by using our method on several 2D planes independently, since
the influence of the 3D regularizer allows structural information in one plane to propagate to other planes.
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Figure 6. Reconstruction of pair-of-hole images; (top) with centers 4cm apart, (bottom) with centers 3cm apart.
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