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Abstract—Model-based image reconstruction (MBIR) for X-
ray CT produces high quality images from relatively low-dose
scans, but the high computational cost of MBIR algorithms
prevent them from being used ubiquitously in the clinic. Variable
splitting with the alternating directions methods of multipliers
(ADMM) provides rapidly converging algorithms by decompos-
ing the challenging MBIR optimization problem into an iterated
sequence of simpler subproblems. Variable splitting algorithms
have achieved state-of-the-art performance in 2D, but replicating
those successes in 3D has proved difficult. In this paper, we
consider a simple splitting algorithm that decomposes the recon-
struction problem into a nonnegative denoising problem and a
quadratic tomography problem. Unlike prior work, we solve the
tomography problem with a novel duality-based approach that
yields convergent algorithms similar to ordered subsets methods
and iterated filtered backprojection. We show some promising
preliminary results.

I. INTRODUCTION

Consider the following statistical X-ray CT reconstruction
problem [15]

x̂ = argmin
x≥0

{
J(x) =

1

2
||Ax− y||2W + R(x)

}
, (1)

with noisy sinogram data y ∈ RM , system matrix A ∈
RM×N , statistical weights W = diagi{wi}, and convex
edge-preserving regularizer R. The optimization problem (1)
is impractical or impossible to solve in closed form due
to the large dimension of x, the nonnegativity constraint
and the nonquadratic regularizer. Consequently, solving (1)
requires an iterative optimization routine, but unfortunately
this is a challenging problem to solve efficiently. Gradient-
based simultaneous algorithms that update all pixels of x
simultaneously appear to be better-equipped to take advantage
of modern highly-parallel hardware. However (1) presents
several challenges for gradient-based methods:

1) the CT projection (A) and backprojection (A′) oper-
ations, which are both required to compute an update
direction for simultaneous gradient-based methods, are
computationally expensive; and

2) the reconstruction cost function J is difficult to precon-
dition, especially for 3D reconstruction [3], [4], [9], [18].

In this paper, we consider a variable splitting algorithm that
decomposes (1) into an image-space denoising problem and a
quadratic “tomography” minimization problem involving the
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CT system matrix. The primary contribution of this paper is
a novel duality-based approach to this tomography problem.

II. VARIABLE SPLITTING

Variable splitting with ADMM is a technique to solve a
challenging optimization problem, e.g., (1), with an iterated set
of simpler subproblems [9], [11]–[13]. Let v ∈ RN . Instead
of directly solving (1), we solve the constrained problem

x̂ = argmin
x

min
v≥0

1

2
||Ax− y||2W + R(v) s.t. x = v. (2)

The augmented Lagrangian for this constrained problem is

L(x,u;η) = 1

2
||Ax− y||2W + R(v) +

1

2
||x− v + η||2Γ,

(3)

where Γ � 0. The alternating directions method of multipliers
(ADMM) iterations leads to two subproblems:



x(n+1) = argmin
x

1

2
||Ax− y||2W +

1

2

∣∣∣
∣∣∣x− v(n) + η(n)

∣∣∣
∣∣∣
2

Γ
,

v(n+1) = argmin
v≥0

1

2

∣∣∣
∣∣∣v − x(n+1) − η(n)

∣∣∣
∣∣∣
2

Γ
+ R(v),

η(n+1) = η(n) + x(n+1) − v(n+1).
(4)

The x and v updates do not need to be performed exactly to
ensure convergence [2]; empirically, more accurate solutions
accelerate convergence.

We choose Γ to be diagonal. The v update is then a
penalized weighted least squares denoising problem. There
are many algorithms to solve this class of problem, and it
can be solved quickly even for large problems and non-
smooth regularizers [7], [8]. Hereafter we focus on the more
challenging tomography x update. Note that many splitting-
based algorithms have inner steps similar to the x update we
study here [9], [13]. The techniques in the following section
can be applied to those algorithms as well.

III. THE TOMOGRAPHY SUBPROBLEM

Though the x update in (4) is a theoretically simple uncon-
strained quadratic minimization problem, solving for x(n+1)

is challenging in practice [9], [10]. The popular family of
gradient-based methods share the form:





r(m) = Ax(m) − y,

g(m) = A′Wr(m) + Γ
(
x(m) − v(n) + η(n)

)
,

d(m) = f (m)
(
g(m)

)
,

x(m+1) = x(m) + d(m).

(5)
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The function f (m) : RN → RN is an iteration-dependent
preconditioning and step-size computing step. Preconditioning
modifies the search direction such that d(m) “points” more
toward the global minimizer x∗. The ideal, and unrealizable,
preconditioner would rapidly implement the inverse of the cost
function Hessian

fideal(g) = Pidealg = [A′WA + Γ]
−1

g. (6)

Many practical approximations to Pideal have been proposed
involving diagonal matrices, circulant operators and the FFT
[3], [4], [9], [13], [18]. Unfortunately the shift-varying nature
of the Hessian, induced by the statistical weights W and
geometrical properties of A, make designing a highly effective
preconditioner challenging.

A. Duality approach

Instead of solving the tomography problem directly with
a gradient-based method, we introduce an auxiliary variable
u ∈ RM and consider the following equivalent saddle-point
problem:

x(n+1) = argmin
x

max
u

{
S(x,u) = (Ax− y)′Wu

+
1

2

∣∣∣
∣∣∣x− v(n) + η(n)

∣∣∣
∣∣∣
2

Γ
− 1

2
||u||2W

}
. (7)

Performing the inner maximization yields the original
quadratic function in (4):

∇uS = W(Ax− y)−Wu = 0, (8)
u(x) = Ax− y, (9)

S(x,u(x)) = 1

2
||Ax− y||2W +

1

2
||x− v + η||2Γ, (10)

so solving (7) (i.e., finding the saddle point), solves the
quadratic x update problem.

We observe that S(x,u0) is convex and continuous in x
for all u0, and S(x0,u) is concave and continuous in u for
all x0. By Sion’s minimax theorem [14], we can reverse the
order of the minimization and maximization steps in (7),

min
x

max
u
S(x,u) = max

u
min

x
S(x,u), (11)

to find the saddle point. In other words, instead of solving
the image-space primal problem, we can solve the projection-
domain dual problem.

We compute the minimizing value of x in terms of u,

x(u) = v(n) − η(n) − Γ−1A′Wu, (12)

and plug (12) into (7) to yield the quadratic dual problem:

u∗ = argmax
u

{
D(u) = −1

2
u′
(
W + WAΓ−1A′W

)
u

+ u′W
(
A
(
v(n) − η(n)

)
− y

)}
. (13)

There are many options for solving (13), and as in the primal
problem, a natural family of algorithms are the gradient-based

methods. The general form of a gradient-based algorithm in
the dual domain is:





p(m) = W
(
y + u(m) + A

(
Γ−1γ(m) − v(n) + η(n)

))
,

q(m) = f (m)
(
p(m)

)
,

u(m+1) = u(m) + q(m),

γ(m+1) = γ(m) + A′Wq(m),
(14)

with u(0) = 0, γ(0) = 0, and f (m) a preconditioning and
step-size computing operation in the projection domain. After
a number of iterations, we update x with (12) and return to
the outer iterations of the ADMM algorthm (4),

x(n+1) = x
(
u(m)

)
= v(n) − η(n) − Γ−1γ(m). (15)

As a practical matter, we can warm-start this dual problem
by saving the final values of u(m) and γ(m) between x updates
and use those instead of u(0) = 0 and γ(0) = 0.

B. Projection-domain group coordinate ascent algorithm

Ordered subsets (OS) algorithms [1], [5] partition the sys-
tem matrix, weights and data into disjoint subsets by view,
{Sk}Kk=1, such that

A′W
(
Ax(m) − y

)
≈ Nβ
|Sk|

∑

β∈Sk

Aβ
′Wβ

(
Aβx(m) − yβ

)
.

(16)

The right hand side of (16) is used in OS methods as an
approximate gradient that requires the forward- and back-
projection of only |Sk| views instead of Nβ . This gradient
approximation is accurate when x(m) is far from the solution
and when the subsets contain enough views, but for x(m)

near the solution and smaller subsets, OS algorithms without
relaxation approach limit cycles around the solution.

In the projection (dual) domain, an analogy to ordered
subsets is group coordinate ascent (GCA). A GCA algorithm
divides u into K groups, u = [u0, . . . ,uK−1] and iteratively
maximizes over each group while holding the others constant.
Even if the maximization is performed approximately with a
minorize-maximize step, the algorithm is convergent [16].

The following algorithm for solving (13) uses f (m) to apply
the linear preconditioner Pk and computes the optimal step
length for each group. For all groups k = 0, . . . ,K−1 perform
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the following:




p
(m)
k = Wk

(
y + u

(m)
k

+Ak

(
Γ−1γ(m+ k

K ) − v(n) + η(n)
))
,

q
(m)
k = Pkp

(m)
k ,

d
(m)
k = Ak

′Wkq
(m)
k ,

α
(m)
k = −

(
q
(m)
k

)
′p(m)
k(

q
(m)
k

)
′Wkq

(m)
k +

(
d
(m)
k

)
′Γ−1d(m)

k

,

u
(m+1)
k = u

(m)
k + α

(m)
k q

(m)
k ,

γ(m+ k+1
K ) = γ(m+ k

K ) + α
(m)
k d

(m)
k .

(17)

These updates are iterated for m = 1, . . . , Niter-dual. In the con-
text of an ADMM algorithm with warm-starting, Niter-dual = 1
or 2 appears to be sufficient.

C. Comparison to image-space algorithms

While (17) is written in a convenient form for implementa-
tion, the behavior of the algorithm is unclear. To compare (17)
and traditional ordered subsets algorithms, we rewrite some of
the steps in terms of x using (15):




r
(m)
k = Akx

(m+ k
K ) − yk,

u
(m+1)
k = uk + α

(m)
k PkWk

(
u
(m)
k − r

(m)
k

)
,

x(m+ k+1
K ) = x(m+ k

K )

−α(m)
k Γ−1Ak

′WkPkWk(rk − uk),
(18)

with x(0) = v(n) − η(n).
Recall that the group assignments are arbitrary and each

loop through all the groups requires only one total forward
and back-projection. The algorithm given in (18) will converge
to the solution to the x-update equation, x(n+1), though
possibly not monotonically in the primal cost function. This
flexibility in subset selection is very different from traditional
OS algorithms that require judicious design of the subsets to
satisfy the subset approximation (16).

The step size computation guarantees monotone conver-
gence in the dual function, so we have some flexibility
in designing the projection-domain preconditioners Pk. One
interesting choice is

PIFBP
k = W−1

k FkW
−1
k , (19)

where the Fk are positive-definite ramp filters. If Γ−1 is
chosen to correct for the nonuniform spatial sampling of the
CT system, (18) resembles an iterated filtered backprojection
algorithm for solving the x update subproblem (7):

x(m+ k+1
K ) = x(m+ k

K ) − α(m)
k Γ−1Ak

′Fk(Akx− yk − uk).
(20)

D. Simplified step size computation

As the number of groups increases, the forward- and back-
projections are no longer the only considerable computational
costs of the dual group coordinate ascent algorithm (17).
In particular the step size computation, which includes an
inner product on two image-sized vectors, becomes relatively
computationally expensive. To mitigate this we replace the
step size computation with a minorize-maximize step. Let
Mk � AkΓ

−1Ak
′ be diagonal. All the entires of Ak and

Γ are nonnegative, so we use the easily-computed majorizer
[1]:

Mk = diagi
{[

AkΓ
−1Ak

′1
]
i

}
. (21)

The following modified dual ascent algorithm performs no
inner products and only a few diagonal matrix multiplications:




p
(m)
k = Wk

(
y + u

(m)
k

+Ak

(
Γ−1γ(m+ k

K ) − v(n) + η(n)
))
,

q
(m)
k = −(Wk + WkMkWk)

−1
p
(m)
k ,

u
(m+1)
k = u

(m)
k + q

(m)
k ,

γ(m+ k+1
K ) = γ(m+ k

K ) + Ak
′Wkq

(m)
k .

(22)

This algorithm is more practical than (17) when the number
of groups is very large (e.g., one group for each view). We
do not expect that using a majorizer will considerably slow
convergence, because AkΓ

−1Ak
′ shrinks as the number of

views in the kth group decreases.

IV. PRELIMINARY EXPERIMENTS

As a preliminary experiment, we instantiated a 1024 ×
1024×192-pixel XCAT phantom and generated simulated data
for an axial scan with a GE Lightspeed scanner [17] with
888 channels, 64 rows, and 984 views. We simulated Poisson
noise and reconstructed onto a 512 × 512 × 96-pixel grid
without the nonnegativity constraint and using a 26-neighbor
edge-preserving regularizer with the smooth Fair potential. All
calculations were performed on an NVIDIA Tesla C2050.

The proposed variable splitting algorithm used Γ =

diagj
{
[A′WA]jj

}
. We solved the denoising subproblem with

group coordinate descent [8] and performed the x update with
the tomography solver using one view per group and the
simplified step size calculation (22). We looped through all
the views in the tomography algorithm once per outer iteration
and visited the views in random order.

To provide a preliminary comparison, we plotted cost
function against iteration for the proposed algorithm, ordered
subsets with separable quadratic surrogates Nesterov’s 1983
first-order acceleration [6] with 8, 10, 12 and 16 subsets. All
algorithms perform one forward- and back-projection per outer
iteration; each algorithm took approximately one minute per
(outer) iteration. See Figure 1. The proposed algorithm con-
verges faster than all the accelerated OS algorithms. Figure 3
illustrates the cost function of each algorithm as a function of
iteration, and Figure 2 shows the center slice of x(5) after five
iterations of the proposed algorithm.
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Fig. 1: Root mean squared difference of the proposed algo-
rithm and OS-SQS-Nesterov by iteration to a converged refer-
ence image. The proposed algorithm converges considerably
more quickly than OS-SQS-Nesterov with any tested number
of subsets.

Fig. 2: Image after 5 iterations of proposed algorithm; center
slice shown in a [800,1200] HU window.

V. CONCLUSIONS AND FUTURE WORK

We proposed a novel duality-based method to solve an
inner quadratic tomography subproblem for a variable splitting
algorithm. The reconstruction algorithm appears to converge
rapidly in preliminary experiments, and we intend to perform
a more thorough investigation of its performance.

The duality-based approach to the tomography problem
presented here is applicable beyond the simple splitting-based
algorithm in this paper, and it offers an efficient solution to
the challenging 3D “tomography problem” that appears in
many splitting-based reconstruction algorithms. Future work
will explore more efficient methods to solve the projection-
domain dual problem.
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