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ABSTRACT

New methods have been developed for parallel MRI reconstruc-

tion combining GRAPPA and sparsity. One impediment to the prac-

tical application of such methods is selecting a regularization pa-

rameter that acceptably balances the contributions of GRAPPA and

sparsity. We propose a broadly applicable Monte-Carlo-based ap-

proximation to Stein’s unbiased risk estimate (SURE) for a suit-

able weighted mean-squared error (WMSE) metric. Applying this

approximation to predict the WMSE-optimal tuning parameter for

sparsity-based reconstruction, we are able to tune our parameter to

achieve nearly MSE-optimal performance. In our simulations, we

vary the noise level in the simulated data and use our Monte-Carlo

method to tune the reconstruction to the noise level automatically.

Index Terms— Parallel imaging, MRI, regularization parame-

ter selection, sparsity, Stein’s unbiased risk estimate, Monte-Carlo

methods.

1. INTRODUCTION

GRAPPA [1] is a popular reconstruction method for parallel imag-

ing that does not require explicit knowledge of the coil sensitivities

and, in the uniformly spaced undersampling case, yields a direct ex-

pression for the missing k-space. Sparsity has been successfully ap-

plied in many ways to improve MRI reconstruction [2], but as with

any regularization method, parameter selection hinders widespread

adoption. The Denoising Sparse Images from GRAPPA using the

Nullspace (DESIGN) method [3] employs a regularization parame-

ter to balance fidelity to the GRAPPA reconstruction with transform-

domain joint sparsity of the reconstructed coil images. By approxi-

mating the mean-squared error (MSE), Stein’s unbiased risk estimate

(SURE) [4] provides a reasonable criterion for automatic parameter

selection.

We propose a Monte-Carlo-based technique geared to parallel

MRI with complex-valued k-space that allows us to estimate SURE

for each of several candidate tuning parameter values using two eval-

uations of the reconstruction method per parameter choice. As op-

posed to traditional Monte-Carlo estimation, our approach does not

require averaging multiple realizations because the thousands of k-

space points a typical data set contains effectively reduces the vari-

ance of our estimate. Our derivation follows the approach for single-

coil MRI [5]. We illustrate the benefits of Monte-Carlo-based SURE

estimation using DESIGN because it (a) employs GRAPPA in the

reconstruction and does not rely on coil sensitivities and (b) pre-

serves the acquired k-space data in the reconstruction. In this paper,
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we demonstrate that for simulated brain images, the Monte-Carlo-

based SURE approximation yields a tuning parameter for DESIGN

that performs nearly MSE-optimally, without prior knowledge of the

true signal.

We begin by describing our data model and our notation for

GRAPPA reconstruction. Then, we derive our weighted error mea-

sure WMSE for GRAPPA parallel imaging from the MSE and our

SURE-based estimate WSURE for this WMSE. We explain our

Monte-Carlo-based scheme for estimating the WSURE using just

two evaluations of the reconstruction function, and apply it to auto-

matic parameter tuning for DESIGN. We conclude with simulations

employing our method with simulated brain data depicting nearly

MSE-optimal performance over a range of noise levels.

2. DATA MODEL

Consider the vector of unknown noise-free samples x ∈ C
NL of N

k-space locations using L coils. We acquire M ≤ N samples from

all the coils, yielding k-space observations y ∈ C
ML according to

y = Mx + ξξξ, (1)

where the mask M = IL ⊗ T, T is a M × N down-sampled

identity matrix representing undersampling of k-space, and we ig-

nore field inhomogeneities and relaxation effects. The above model

applies equally well to uniform and arbitrary Cartesian sampling.

These observations are corrupted by complex-valued Gaussian noise

ξξξ ∈ C
ML such that Eξξξ{ξξξ} = 0, Eξξξ{ξξξξξξ

⊤} = 0, and Eξξξ{ξξξξξξ
′} = ΩΩΩ ∈

C
ML×ML, where ΩΩΩ ≻ 0 is a Hermitian-symmetric positive defi-

nite matrix, and (·)′ and (·)⊤ are the conjugated and non-conjugated

transposes, respectively, of a (complex-valued) vector or matrix. The

probability density function of ξξξ is given by

g(ξξξ) = K exp
`
−ξξξ

′ΩΩΩ−1
ξξξ

´
, (2)

where K is a normalization constant.

3. GRAPPA AS A LINEAR OPERATOR

GRAPPA reconstructs missing k-space locations through a linear

transformation G ∈ C
NL×ML of the observed data y, given by

G
△

= M
′ + fM′

G, (3)

where G ∈ C
(N−M)L×ML acts on y to fill in the missing k-space

locations specified by fM = IL ⊗ eT, and eT is a (N − M) × N
subsampling matrix that selects all the rows from IN that are not al-

ready in T. It is easy to see that MM′ = IML, fMfM′ = I(N−M)L,

and fMM′ = MfM′ = 0. While G is calibrated from noisy training

data, we treat G as deterministic and fixed (see Lemma 1).

2013 IEEE 10th International Symposium on Biomedical Imaging:
From Nano to Macro
San Francisco, CA, USA, April 7-11, 2013

978-1-4673-6455-3/13/$31.00 ©2013 IEEE 954



4. QUADRATIC ERROR MEASURES

In the sequel, we are interested in an estimator fγγγ(y) with tunable

parameters γγγ ∈ R
n that yields an estimate of the full multi-coil

k-space x. MSE-type measures are often used to quantify image

quality in reconstruction problems. To minimize MSE, one would

adjust γγγ so as to minimize

MSE(γγγ)
△

= ‖x − fγγγ(y)‖2
2. (4)

However, MSE(γγγ) is neither accessible in practice nor can be esti-

mated from y due to rank-deficiency ofM. To get around this limita-

tion, we assert that GMx ≈ x in the noise-free case (i.e., GRAPPA

does a good job filling the missing k-space). Since GRAPPA pre-

serves the acquired data y exactly, we compute the WMSE over only

the remaining (missing) data:

WMSEfM
(γγγ)

△

= ‖fM(GMx − fγγγ(y))‖2
2, (5)

= ‖GMx − fMfγγγ(y)‖2
2 (6)

Since DESIGN also preserves the acquired data, we write

fγγγ(y) = M
′
y + fM′

gγγγ(y), (7)

where gγγγ : C
ML → C

(N−M)L reconstructs the missing k-space.

For such data-preserving fγγγ , WMSEfM
(γγγ) reduces to

WMSEfM
(γγγ) = ‖GMx − gγγγ(y)‖2

2. (8)

In this paper, we will focus on fγγγ that is of this form and use

WMSEfM
(γγγ). However, our argument can be extended to other

quadratic error measures including other weighted MSE(γγγ).
Expanding the quadratic and making the substitution Mx =

y − ξξξ,

WMSEfM
(γγγ) = ‖gγγγ(y)‖2

2 − 2R{y′
G

′
gγγγ(y)} + C

+ 2R{ξξξ′G ′
gγγγ(y)},

(9)

where R{·} denotes the real part of a complex number and C
△

=
‖GMx‖2

2 is an irrelevant constant that does not depend on γγγ. The
only other term that is not accessible in (9) is ξξξ′G ′gγγγ(y). We use

Stein’s principle to estimate this term in the sequel.

5. USING STEIN’S LEMMA TO ESTIMATE WMSEfM
(γγγ)

It is easy to see that g(ξξξ) in (2) satisfies the following:

∇ξξξg(ξξξ) = −g(ξξξ)ξξξ
′ΩΩΩ−1

, (10)

where∇ξξξ
△

= 1
2
(∇ξξξR − ι∇ξξξI ) and∇ξξξR ,∇ξξξI are 1×ML gradient

operators with respect to the real, ξξξR, and imaginary, ξξξI , parts of ξξξ,
respectively. This identity can be used to estimate Eξξξ{ξξξ

′
G

′gγγγ(y)}
as follows.

Lemma 1. Let gγγγ : C
ML → C

(N−M)L be individually analytic

with respect to real and imaginary parts of its argument (in the weak

sense of distributions). Then, as long as the deterministic matrix G

satisfies Eξξξ{|[G
′gγγγ(y)]m|} < ∞, m = 1, . . . , ML, we have

Eξξξ{ξξξ
′
G

′
gγγγ(y)} = Eξξξ

˘
tr{ΩΩΩG

′
Jgγγγ

(y)}
¯

, (11)

where Jgγγγ
(y) is the Jacobian matrix of partial derivatives of gγγγ

w.r.t. components of y and is defined via its elements as

[Jgγγγ
(y)]qp

△

=
1

2

„
∂[gγγγ(y)]q

∂yRp

− ι
∂[gγγγ(y)]q

∂yIp

«
. (12)

Proof. The proof for a general noise covariance ΩΩΩ is similar to that

forΩΩΩ = I in [5].

We now use (11) to show that

WSURE(γγγ)
△

= ‖gγγγ(y)‖2
2 − 2R{y′

G
′
gγγγ(y)} + C

+ 2R{tr{ΩΩΩG
′
Jgγγγ

(y)}}.
(13)

is an unbiased estimate of WMSEfM
(γγγ).

Theorem 1. Let gγγγ(y) and G satisfy the hypotheses of Lemma 1.

Then Eξξξ{WSURE(γγγ)} = Eξξξ{WMSEfM
(γγγ)}.

The proof is straightforward and uses Lemma 1 to estimate

ξξξ′G′gγγγ(y) in (9). In practice, one can ignore the irrelevant constant

C in (13) and the expectation E is dropped. WSURE is independent

of x and depends only on y, gγγγ via tr{ΩΩΩG
′Jgγγγ

(y)} and the noise

covariance matrixΩΩΩ.

While Jgγγγ
(y) in (13) may be evaluated (recursively) analyti-

cally for a (iterative) gγγγ (as done in [5]), we propose a Monte-Carlo

scheme for numerically estimating tr{ΩΩΩG
′Jgγγγ

(y)} in WSURE
(13). The proposed approach does not require knowledge of the

internal working of gγγγ as we shall see next; this advantage makes it

readily applicable to a wide variety of gγγγ (admissible by Lemma 1).

6. MONTE-CARLO ESTIMATION OF WSURE(γγγ)

Next, we extend the Monte-Carlo method of [6] to complex gγγγ .

Theorem 2. Let gγγγ admit a second-order Taylor expansion in addi-

tion to satisfying the hypotheses in Lemma 1. Consider the random

vector

̺̺̺(ε)
△

=
gγγγ(y + εb) − gγγγ(y)

ε
, (14)

where b ∈ C
ML is an i.i.d. random vector independent of y such

that Eb{b} = 0, Eb{bb⊤} = 0, Eb{bb′} = IML. Then

tr{ΩΩΩG
′
Jgγγγ

(y)} = lim
ε→0

Eb{b
′ ΩΩΩG

′
̺̺̺(ε)}. (15)

The proof involves manipulating the terms of a second order

Taylor expansion of gγγγ(y) using the commutativity of the trace op-

erator, and the second-order statistics of b.

Remark 1. In practice, gγγγ may not always admit a second-order

Taylor expansion as required in Theorem 2. In such cases, it is pos-

sible to extend the above result (15) in the weak sense of distributions

similar to that documented in Theorem 2 of [6].

Remark 2. In practice, the limit in (15) cannot be resolved analyti-

cally, so we use the approximation

tr{ΩΩΩG
′
Jgγγγ

(y)} ≈ b
′ ΩΩΩG

′
̺̺̺(ε). (16)

for sufficiently small ε ≈ 0 and one realization of a complex-valued

b, where we have dropped the expectation Eb w.r.t. b in (16).

Remark 3. Computing tr{ΩΩΩG
′Jgγγγ

(y)} (15) only requires the re-

sponse of gγγγ to y and y + εb for a complex-valued b and does

not need the knowledge of internal workings of gγγγ , so (16) is very

flexible in its applicability.
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Fig. 1. The sum-of-squares combined ground-truth (no noise).

7. APPLICATION TO DESIGN

DESIGN denoising [3] jointly minimizes a least-squares term pro-

moting fidelity to the GRAPPA-reconstructed k-space and a ℓ1,2 hy-

brid norm promoting joint sparsity in an appropriate sparse trans-

form domain of the parallel-receive coil images. In particular, we

optimize over the missing data v ∈ C
(N−M)L:

gγγγ(y) = arg min
v

1

2
‖v − Gy‖2

ΩΩΩG

+ γ‖ΨΨΨF−1(fM′
v + M

′
y)‖1,2.

(17)

The least-squares term is normalized using a block-diagonal approx-

imation to the GRAPPA-amplified noise covariance ΩΩΩG = GΩΩΩG
′,

which is described in [7]. We solve (17) efficiently using Split-

Bregman iteration [8], introducing the auxiliary variable w =

ΨΨΨF−1(fM′v + M′y). We ran ten iterations of the Split-Bregman

algorithm. A four-level bi-orthogonal ‘9-7’ discrete wavelet trans-

form was used to sparsify the coil images.

For Monte-Carlo SURE, complex noise b was generated with

iid Bernoulli real and imaginary parts (satisfying the requirements

of Theorem 2), and ε was chosen to be 10−3. Each WSURE es-

timate uses one realization of complex noise b; only two runs of

the DESIGN problem (17) per candidate γ are needed to generate a

WSURE estimate. We calculate b′ΩΩΩG
′ once and store it for all γ’s.

A 256 × 256-pixel axial slice of an 1.0 mm isotropic T1-

weighted normal brain was obtained from the BrainWeb database

(http://www.bic.mni.mcgill.ca/brainweb/) [9], and

this data set was combined with a simulated eight-channel circular

array coil and undersampled by two in each direction in k-space us-

ing MATLAB. Complex Gaussian noise was added to the samples,

and a 24 × 24 block in the center of k-space was retained to be

used as GRAPPA calibration data. Figure 1 shows the fully-sampled

reference image without noise.

7.1. Validating WSURE vs. WMSE

To validate our WSURE estimate (13) of the WMSE (5), we plot-

ted the complex Monte-Carlo-based WSURE estimates for a range

of γ’s logarithmically spaced between 100 and 105 against the

WMSE’s computed using the true acquired k-space values. To fa-

cilitate direct comparison of these values, the constant C = ‖Gx‖2

was included in the plot of the WSURE estimate; in practice, this

constant is unknown, but it does not affect determining the WSURE-

optimal γ.
Over the range of γ’s in Figure 2, the WSURE estimate com-

puted using the proposed complexMonte-Carlo SURE is an effective

approximation of the true WMSE, and of the true MSE, differing by
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Fig. 2. True MSE, WMSE, and estimated WSURE values closely

match across a wide range of γ’s.
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Fig. 3. The WSURE-optimal and WMSE-optimal choices of γ con-

sistently reduce the MSE of the GRAPPA-reconstructed un-acquired

k-space by the same amount across a wide range of noise levels.

a maximum of 0.15 dB over a range of 10 dB. We observed similar

agreement (not shown) for ε = 10−4 and ε = 0.01.

7.2. Optimal Parameter Tuning for Noise

To determine the MSE-optimal choice of γ over a range of noise lev-

els (SNR from 4.5 to 16.5 dB), we minimized WSURE with respect

to γ for the DESIGN method. To avoid local minima, we performed

a three-level coarse-to-fine logarithmic parameter sweep on γ. To

compare the reconstructions, the MSE based on the true values of

the missing k-space was graphed for GRAPPA and DESIGN with

the WSURE-optimal γ.

DESIGN using the WSURE-optimal or WMSE-optimal choices

of γ improves MSE by up to 4 dB over GRAPPA alone in Figure 3.

As shown in Figure 4, this improvement is within 0.014 dB of the

optimal reduction in MSE as measured by the ratios of MSEs be-

tween DESIGN with WSURE-optimal, WMSE-optimal (based on

true values of acquired k-space), and MSE-optimal (based on true

values of the missing k-space) choices of γ. In addition, the WMSE-

optimal and MSE-optimal reconstructions have nearly the same

MSE, validating the assertion that GMx ≈ fMx underlying our

use of WSURE. The sum-of-squares reconstructed and difference

images in Figure 5 portray similar improvement in reconstruction

quality for DESIGN with WSURE- and WMSE-optimal choices of
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Fig. 4. The MSEs for WSURE-optimal, WMSE-optimal, and MSE-

optimal DESIGN are nearly equal to each other over a wide range of

noise variances (less than 0.015 dB variation).

γ in the image domain, for the case of 7.5 dB SNR noise. For this

noise level, optimizing DESIGN using WSURE involved evaluating

27 choices of γ, each taking 48 seconds on average, for a total run

time of 22 minutes. Directly minimizing the WMSE compared 30
choices of γ in 11 minutes, averaging 23 seconds per parameter

choice. GRAPPA alone ran in 1.7 seconds.

8. CONCLUSION

We described the WSURE estimator for a weighted-MSE error met-

ric suitable for data-preserving GRAPPA-based parallel imaging

reconstruction, proposed a Monte-Carlo-based approximation to the

WSURE estimate that requires two evaluations of gγγγ(y) per can-

didate parameter choice, and applied the proposed method to find

the WSURE-optimal tuning parameter for DESIGN sparsity-based

denoising. The ability to achieve nearly MSE-optimal performance

justifies using Monte-Carlo-based WSURE estimation for reason-

able automatic parameter selection with DESIGN. The proposed

Monte-Carlo method generalizes to other parallel-imaging recon-

struction algorithms, simplifying the practical application of such

algorithms.
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