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ABSTRACT

Spoke RF pulse design in MRI requires joint optimization of

the k-space trajectory and RF pulse weights. This design task

is often modelled as a sparse approximation problem with

a cost function evaluating the l2 norm of the excitation er-

ror, which can be approximately solved using the orthogonal

matching pursuit (OMP) algorithm. However, l2 optimization

does not strictly regulate a maximum deviation between exci-

tation and desired patterns, and may leave bright or dark spots

in the image. In this paper, we model the pulse design prob-

lem as a sparse approximation problem with an l∞ norm cost

function, and propose a greedy algorithm for solving this new

problem. Simulation results demonstrate that our algorithm

can produce improved spoke RF pulses (reduced maximum

error) compared to l2 optimization.

Index Terms— spoke pulse, OMP , l∞ norm, minimax,

RF shimming

1. INTRODUCTION

The spoke excitation k-space trajectory (also known as echo

volumnar or fast kz) has several applications in MRI, such

as B1 shimming [1]. A spoke RF pulse consists of a train

of short (<1 msec) sinc subpulses. A through-plane gradi-

ent is transmitted simultaneously with the RF subpulses to

achieve slice selection, and gradient blips in the kx and ky di-

rections are interleaved between subpulses to achieve within-

slice modulation. The gradient blips determine the in-plane

k-space locations of those subpluses, which is referred to as

phase encoding location. In practice, only a small number

of subpulses can be transmitted due to time constraints on

the whole RF pulse. Therefore, it is desirable to select only

a few in-plane phase encoding locations. These locations

are not selected a priori but are chosen as part of the spoke

pulse design. In other words, the k-space trajectory and RF

pulse weights should be designed jointly. This problem can
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be solved by exhaustively searching all the possible phase en-

coding locations and selecting the best, but this will lead to

a combinatorial problem, which is hard to solve online while

the subject is in the scanner. Recently, several approaches us-

ing orthogonal matching pursuit (OMP) [2] or modified OMP

have been proposed, which achieve good approximations with

much less computation time [1, 3–6]. However, all of these

approaches attempt to minimize the l2-norm of excitation er-

ror, which does not strictly enforce a maximum deviation (l∞-

norm) between the desired and actual excitation patterns. This

can result in undesired image artifacts such as bright or dark

spots, which may decrease the diagnostic utility of the image.

Therefore, in this paper, we propose to model the spoke pulse

design problem as a sparse approximation problem with min-

imization of the l∞-norm to potentially reduce these artifacts.

We also propose a greedy-like algorithm to solve it.

2. THEORY

A typical spoke RF pulse design problem is solved as follows:

min
x

‖d− Fx‖2, such that ‖x‖0 = k, (1)

where d ∈ C
N is the desired excitation pattern, F ∈ C

N×N

is the system matrix under the small tip angle approximation

[7]. N is number of pixels in desired excitation pattern. In this

paper, we ignore B0 inhomogeneity, which is a reasonable

approximation to short RF pulse. Under this assumption, F

is a (inverse) discrete Fourier transform matrix multiplied by

the coil sensitivity, and x is a vector of the RF pulse weights

to solve for. The l0-(semi)norm in (1) ensures k-sparsity of x,

i.e., the number of “phase encoding” locations (subpulses) is

k. This problem can be solved using OMP.

The above modelling does not regulate spikes that can oc-

cur in d − Fx, which may lead to dark or light spot artifacts

in the result image, and we therefore propose the following

slightly different problem:

min
x

‖d− Fx‖∞, such that ‖x‖0 = k. (2)

2013 IEEE 10th International Symposium on Biomedical Imaging:
From Nano to Macro
San Francisco, CA, USA, April 7-11, 2013

978-1-4673-6455-3/13/$31.00 ©2013 IEEE 696



This problem explicitly minimizes the maximum absolute

value of the entries in d − Fx, so that the previously men-

tioned artifacts are reduced. Sparsity is again enforced using

the l0-(semi)norm of x.

To solve the problem in (2), we propose the following

greedy selection algorithm, Algorithm 1, shown below.

Algorithm 1 Greedy Algorithm.

1: Input: F, d, and k.

2: Output: x

3: Initialize: Λ = ∅
4: for j = 1 to k do

5: λj = arg min
l/∈Λ

min
x̃

‖d− F(:, l ∪ Λ)x̃‖∞

6: Λ = Λ ∪ {λj}
7: end for

8: x = arg min
x

‖d− F(:,Λ)x‖∞ {Calc coeffs.}

The inputs to Algorithm 1 are the coil-sensitivity mod-

ulated inverse DFT matrix F, the desired excitation pattern

d, and the desired sparsity level k. The output is a vector of

pulse weights x. The set Λ is a set of indices of the atoms in F

that we use to approximate d. In each iteration, the algorithm

finds the index l of an atom of F that results in the minimum

possible l∞-norm approximation (in Line 5). The index is

then added to the set Λ, and the pulse weights x are calcu-

lated by minimizing the l∞-norm in line 8 using the atoms

specified by Λ.

Lines 5 and 8 in Algorithm 1 both involve solving the

following unconstrained l∞-norms minimization problem,

where A are the columns of of F in line 5 of Algorithm 1.

min
x

‖d−Ax‖∞ (3)

We propose an efficient algorithm to solve this uncon-

strained l∞ norm minimization problem, which is described

in detail in section 3. However, algorithm 1 can still be slow

in practice because of line 5. Almost every single column

in F has to be used for solving an unconstrained l∞ norm

minimization problem. A typical target excitation pattern is

64x64 pixels (e.g., slice selective excitation), which results in

F having 4096 columns, and it would be very time consuming

to run our unconstrained l∞ norm minimization 4096 times at

each iteration of algorithm 2. It it therefore desirable to use

fewer candidate atoms in this step. One way to do this is to

try only the q atoms (e.g. q = 10) that have the q largest

dot products with the residual. This algorithm is shown be-

low as Algorithm 2, and is called “greedy-like” because it is

not strictly guaranteed to pick the best l∞-norm minimization

vector at each iteration.

Algorithm 2 Greedy-like Algorithm.

1: Input: F, d, k, and q.

2: Output: x

3: Initialize: a = 0, Λ = ∅
4: for j = 1 to k do

5: r = d− a {Update residual.}
6: p = F′r {Dot products.}
7: S = { set of (indices /∈ Λ) of max q elements of p }
8: λj = arg min

l∈S
min
x̃

‖d− F(:, l ∪ Λ)x̃‖∞

9: Λ = Λ ∪ {λj}
10: x = arg min

x

‖d− F(:,Λ)x‖∞ {Calc coeffs.}

11: a = F(:,Λ)x {Update approximation.}
12: end for

In line 6 of Algorithm 2, the dot product of the residual

with each atom in F is computed. In line 7, indices of the q
candidate atoms not in Λ that have the q biggest dot products

are saved in the set S. Finally, in line 8, the algorithm picks

the atom in S that when added to the set Λ, results in the min-

imum l∞-norm approximation to d. The l∞-norms in lines 8

and 10 are again solved using the proposed unconstrained l∞
norm minimization algorithm, to be described below.

Algorithm 2 uses the dot products, F′r, to eliminate the

need for trying every atom with the relatively slow proce-

dure of unconstrained l∞ norm minimization algorithm. This

shortcut does not guarantee that the q candidate atoms with

largest dot product will generate the lowest l∞-norm out of

all possible atoms. Thus, the choice of q presents a tradeoff

between algorithm speed and “greediness.”

3. SOLVING THE UNCONSTRAINED L∞

MINIMIZATION PROBLEM

This section describes our algorithm to solve (3). We pro-

pose to use variable-splitting to transform this unconstrained

problem into the following equivalent constrained problem:

min
x,v

‖v‖∞, such that v = Ax− d. (4)

Then we form the augmented Lagrangian function:

L(x,v,y) = ‖v‖∞ +
µ

2
‖Ax− v − d− y‖22 (5)

where y is the scaled dual variable and µ is a penalty parame-

ter. We then solve the min
x,v,y

L(x,v,y) problem using the fol-

lowing alternating direction method of multipliers (ADMM)

update [8]

xk+1 = argmin
x

L(x,vk,yk) (6)

vk+1 = argmin
x

L(xk+1,v,yk) (7)

yk+1 = yk + (Axk+1 − vk+1 − d) (8)
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The update of x is easy, which is xk+1 = A+(vk + d +
yk), where A+ is the pseudo-inverse of A. The update of

y is trivial, which consists of adding the primal error to the

current y. To solve (7) and update v, we propose the following

method. The derivation is similar to the approach for deriving

the soft-thresholding method.

Let c = Axk − d− yk, and equation (7) now becomes:

min
v

(‖v‖∞ +
µ

2
‖v − c‖22) (9)

To solve the problem of this form, we divide it to two steps:

first consider minimizing the function h(v) = u+ µ
2
‖v−c‖22

over complex v that satisfies ‖v‖∞ ≤ u for fixed u; then min-

imize this minimum value, which is a function of u, over u.

In the first step, the objective h(v) is obviously separable in

v = [v1, . . . , vM ]T , so each vi can be chosen independently.

Consider the corresponding element of c = [c1, . . . , cM ]T : if

|ci| ≤ u, then setting vi = ci obviously minimizes |vi − ci|
2

while satisfying |vi| ≤ u. Otherwise, the closest vi to ci lies

on the boundary |vi| = u, and at the phase closest to ci:
vi = ci

u
|ci|

. Putting these together yields the thresholding-

like solution

v̂i(u) = ci
min{u, |ci|}

|ci|
. (10)

Then, if we plug our optimal vi’s into h(v), we get

h(v̂(u)) = u+
µ

2

M∑

i=1

max{|ci| − u, 0}2 (11)

Let φi(u) = 1

2
max{|ci| − u, 0}2; this function is convex

over all u and strictly convex when u < |ci|. Then, re-

parameterizing h(·) in terms of distance u yields

h(u) = u+ µ
M∑

i=1

φi(u). (12)

Since the sum of convex functions is strictly convex as long

as one is strictly convex, we see that h(u) is strictly convex

for u < ‖c‖∞, which is the maximum distance we would

consider (since its boundary contains v = c). The derivative

of φi(u) is min{u− |ci|, 0}, so the derivative

ḣ(u) = 1 + µ

M∑

i=1

min{u− |ci|, 0}. (13)

The extremum u∗ ∈ (0, ‖c‖∞) must satisfy

1

µ
=

M∑

i=1

max{|ci| − u∗, 0} =
∑

i:|ci|>u∗

(|ci| − u∗). (14)

Finding this extremum is easy: denote c̃ = [c̃1, . . . , c̃M ]T the

vector c sorted by magnitude largest to smallest, and find the

largest value of I such that
∑I

i=1
(|ci| − |cI |) ≤ 1/µ. Then,

u∗ lies between |cI | and |cI+1| (or between |cM | and zero,

for I = M ); in particular, u∗ = |cI | − (1/µ −
∑I

i=1
(|ci| −

|cI |))/I . It is possible if I = M that u∗ becomes less than

zero for µ is small enough, in which case the optimal u∗ = 0.

Plugging in u∗ into Eq. (10) yields the non-iterative solution

v for the sub-problem (9) which is used in the update in (7).

4. SIMULATION RESULTS

The simulation contains two parts. First, we demonstrate that

our algorithm can solve the unconstrained l∞ norm minimiza-

tion problem shown in equation (3). Second, we simulate

our algorithms for the overall l∞ norm sparse approximation

problem defined in equation (2). In the first simulation, we

first create a 2D DFT matrix with size n by n and modulate

it by the sensitivity map. Then we randomly pick m (=n/2)

columns from this matrix to form matrix A in (3). We ran-

domly create a vector b with length n, and feed them into our

code and plot ‖Ax − b‖∞ versus number of iterations, The

simulation result is shown in Fig. 1. The coefficient x is ini-

tialized by obtaining the least square solution to (3), and µ is

set to 2 in (5) for ADMM. As we can see, the cost converges

after about 40 iterations. The decrease of the cost function is

not monotonic, which is reasonable since the ADMM method

does not guarantee monotonic convergence. To test whether

it converges to the optimal solution, we used the output of our

algorithm as an input to the MATLAB fminsearch function

and observed no improvement in the cost function. This sug-

gests that our algorithm finds a local minimum, which should

be the global minimum since the cost function is convex.

0 20 40 60
0.3

0.35

0.4

0.45

number of iterations

||
A
x
−

b
||
∞

Fig. 1: test of unconstrained l∞ norm minization

In the second simulation, we investigated our proposed

method in the context of RF shimming. RF shimming is an

important application of spoke RF pulse design, especially in

high field or parallel excitation, with the goal of uniformly

exciting a region with non-uniform transmit sensitivities.

This problem is typically modelled as a sparse approximation

problem as shown in (1). OMP is one conventional algo-

rithm to solve problem (1) and there are many modifications

to OMP to improve its performance for RF spoke pulse de-

sign [1, 3–6]. In our simulation, we compared our algorithm

to a modified OMP with exactly the same structure as our
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Fig. 2: Comparing OMP and proposed algorithm

proposed Algorithm 2 except that the l∞ norm minimization

of lines 8 and 10 are replaced with l2 norm minimization. We

choose this algorithm for comparison for two reasons: first,

keeping the structure the same provides a common ground

for the choice of the norm between l∞ and l2 norm; second,

there are many variations of OMP, and it is not practical to

compare all of them. As a reference, we also include the clas-

sical OMP in our simulation. In the simulation, the desired

excitation pattern is a uniform circle shown in Fig.2-a, which

is then reshaped to a column vector d (4096 by 1). The region

outside the circle is not in our region-of-interest. We create

the system matrix F by multiplying a 2D DFT matrix (4096

by 4096) with the nonuniform coil sensitivity map shown

in Fig.2-b. The comparison of l∞ norm versus number of

phase encoding locations (k) is shown in Fig. 2-c for OMP,

modified OMP and the proposed Algorithm 2. We set our

simulation range of k to be 1 to 10 since we usually want a

small number of spokes in practice to reduce overall pulse

length. We can see in Fig.2-c that OMP fails to significantly

decrease the l∞ norm of the residual after k = 2, while mod-

ified OMP can decrease l∞ norm further, but still has higher

(about twice) l∞ norm compared to our proposed algorithm.

The difference between desired and true excitation patterns is

shown in Fig.2-e. It demonstrates that the excitation pattern

of our proposed algorithm is much closer to the desired pat-

tern than the OMP algorithm and modified OMP algorithm.

We also plot the cross section line of excitation error for all

three methods in Fig. 2-d, and the proposed method has the

smallest ripples.

5. CONCLUSION

In this paper, we proposed a novel method to model the spoke

RF pulse design problem in MRI: instead of modelling it as

a sparse approximation problem with a l2 norm cost function,

we use l∞ in the cost function to limit the maximum error.

To solve this new problem, we proposed a greedy algorithm.

The core part of that greedy algorithm is an unconstrained

l∞ norm minimization in the complex domain (3), and that

is solved using variable-splitting and ADMM. An non itera-

tive solution is derived to solve the most difficult part in the

ADMM update (9) efficiently. To our knowledge, this is also

novel. Our simulation results show that our proposed model

and algorithm result in a much smaller maximum error than

the classical OMP and the modified OMP (i.e., the l2 norm

counterpart of proposed algorithm) for the spoke RF pulse

design problem. Experimental validation will be conducted

in the near future. We plan to extend our proposed method

by including the B0 imhomogeneity effect and considering

parallel excitation. Also, for some applications that only the

magnitude of excitation pattern is of interest, we may mod-

ify our method to solve a ”magnitude minimax” problem and

compare it with the ”magnitude least square” formulation [9].
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