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Sparse shift-varying FIR preconditioners for fast
volume denoising

Madison G. McGaffin and Jeffrey A. Fessler

Abstract—Splitting-based CT reconstruction algorithms de-
compose the reconstruction problem into a iterated sequence of
“easier” subproblems. One relatively memory-efficient algorithm
decomposes the reconstruction problem into a several subprob-
lems, including a volume denoising problem. While easier to solve
in isolation than jointly, these subproblems have highly shift-
varying Hessians that are challenging to effectively precondition
with circulant operators. In this work, we present an algorithm to
design a positive-definite, Schatten p-norm optimal, finite impulse
response (FIR) approximation to a given circulant matrix. With
this algorithm, we generate efficient space-varying precondition-
ers for the volume denoising problem. We demonstrate that
PCG with an efficient space-varying preconditioner can converge
at least quickly as a split-Bregman-like algorithm while using
considerably less memory.

I. INTRODUCTION

Consider a statistical image reconstruction problem

x̂ = argmin
x

{
J(x) =

1

2
||Ax− y||2W + R(Cx)

}
, (1)

where A ∈ RM×N is the system matrix, W is a diagonal
matrix of statistical weights, and R(Cx) is a convex, smooth
and edge-preserving regularizer:

R(Cx) =

Nd∑

d=1

βd

N∑

j=1

κd,jφ
(
[Cdx]j

)
. (2)

The {Cd}Nd

d=1 are circulant first-order difference matrices,
e.g., Nd = 13 for 26-neighbor differences in 3D CT, and
the object-dependent but constant {κd,j}Nd,N

d=1,j=1 control local
regularizer strength [4]. The potential function φ is convex,
smooth, nonnegative and even.

This minimization problem is challenging to solve directly
due to the large dimension of A, the nonlinearity of the
regularizer, and the high spatial variance of the data-fit and
regularizer Hessians, A′WA and ∇2R(Cx), respectively.

Variable splitting may be used to introduce auxiliary vari-
ables to separate the terms in (1). Enforcing equality con-
straints between the new variables and linear functions of x
then converts (1) into a new, equivalent, constrained minimiza-
tion problem. The alternating directions methods of multipliers
(ADMM) [2] may then be used to solve the new constrained
optimization problem via an iterated sequence of optimization
problems in each variable. This approach has the effect of

Department of Electrical Engineering and Computer Science, University
of Michigan, 1301 Beal Ave., Ann Arbor, MI 48109-2122, U.S.A. Email:
{mcgaffin, fessler}@umich.edu. Supported in part by NIH grant
R01 HL 098686 and CPU donations by Intel. CT sinograms provided by GE
Healthcare.

splitting jointly difficult terms from one another, e.g., the data-
fit and regularization terms in (1). This technique has proved
quite fruitful, and can handle both non-smooth regularizers
and additional constraints like nonnegativity [10].

A relatively memory-efficient splitting introduces two aux-
iliary variables u = Ax and v = x to separate the data-fit and
regularizer terms [8]. Applying ADMM to the resulting con-
strained optimization problem leads to an algorithm involving
the following nontrivial inner optimization problems:

x(j+1) = argmin
x

μu

2

∣∣∣
∣∣∣Ax−

(
u(j) − ηu

(j)
)∣∣∣
∣∣∣
2

+
μv

2

∣∣∣
∣∣∣x−

(
v(j) − ηv

(j)
)∣∣∣
∣∣∣
2

, (3)

v(j+1) = argmin
v

μv

2

∣∣∣
∣∣∣v −

(
x(j+1) + ηv

(j)
)∣∣∣
∣∣∣
2

+ R(Cv),

(4)

with the scalar parameters μu and μv and the dual variables
ηu and ηv introduced by the ADMM algorithm.

The ADMM does not require these subproblems to be
solved exactly but only with summable absolute error taken
over all iterations [3]. In practice, the ADMM algorithm will
almost certainly not be run to convergence, and experience
indicates that more accurate solutions to the iterated sub-
problems improve convergence of the algorithm as a whole.
Consequently fast, even if not exact, solvers to problems (3)
and (4) are desirable.

Solving (3) and (4) in isolation is “easier” than solving them
jointly, but challenges in each problem remain. The tomog-
raphy problem Hessian, μvI + μuA

′A, while free of shift
variance induced by the statistical weights, is still far more
shift-varying in cone-beam CT than in 2D, and evaluating
the gradient of (3) remains very computationally expensive.
While regularizer gradient evaluations are less expensive, the
regularizer Hessian in (4) is highly shift-varying.

The preconditioned conjugate gradients (PCG) algorithm
is an attractive candidate for both the tomography and de-
noising subproblems.1 If an effective preconditioning oper-
ator P ≈

(
∇2J

)−1
can be found, PCG converges quickly,

has modest memory constraints, and updates all coordinates
of the iterate simultaneously (which is attractive for high-
dimensional problems and modern parallel hardware). How-
ever, designing such preconditioners can be challenging.

1Other rapidly converging algorithms exist for the denoising problem in
particular, e.g., split-Bregman-like algorithms [6]. However, these can require
a prohibitive amount of memory for large reconstruction problems, e.g., typical
3D helical CT problems.
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Previously, the authors have preconditioned both the de-
noising problem and the tomography problem with circulant
matrices [8]. Circulant preconditioners are attractive in part
because they allow the algorithm designer to derive a shift in-
variant approximation of the Hessian, and immediately receive
an efficient implementation of the approximation’s inverse
using FFTs. These features make them a good “default”
preconditioner choice, but leave room for improvement by
preconditioners which consider the spatial variance of the
Hessian.

Because PCG with an appropriate preconditioner converges
to an acceptably accurate solution using fewer gradient eval-
uations, we must measure the computational cost of a pre-
conditioner relative to the computational cost of a gradient
evaluation. If a preconditioner takes too much time to apply
relative to a gradient evaluation, it may be more efficient
to use a less computationally expensive preconditioner. For
the denoising problem (4), gradient evaluations are relatively
inexpensive, even compared to applying an FFT. A more
computationally efficient preconditioner is desirable; sparse
FIR filters may be sufficient to replace the FFT operations
used to implement the conventional preconditioner.

In this work, we propose shift-varying preconditioners to
tackle the denoising problem (4). In Section II we present
an algorithm to design positive-definite FIR approximations
to approximate a given circulant matrix. In Section III, we
use these FIR filters to generate new preconditioners for
the denoising problem. Results of the filter design algorithm
and comparisons with other preconditioners and denoising
algorithms are given in Section IV.

A. Notation

If F ∈ RN×N is a circulant matrix, we use the lowercase
f ∈ RN to indicate the first column or kernel of F. The DFT
of a vector f will be written using a hat, e.g., DFT{f} = f̂ .
The vectors and matrices of all ones and zeros are written
1 and 0 respectively, whose dimension should be clear from
context.

B. Schatten p-norms

If F is a matrix, the Schatten p-norm of F is the correspond-
ing vector p-norm applied to the singular values of F. The
Schatten p-norms are unitarily invariant, so if F is circulant,
||F||pp =

∣∣∣
∣∣∣f̂
∣∣∣
∣∣∣
p

p
.

II. PRECONDITIONER DESIGN

In this section, we describe an algorithm for designing a
sparse, positive-definite, computationally efficient FIR filter to
approximate a given circulant filter. In our experiments, the
designed filters were restricted to symmetric n×n×n blocks.
One could instead use the following algorithm as an inner step
of e.g., the successive thinning algorithm [1] to algorithmically
determine the filter footprint.

Let G ∈ RN×N be a positive-definite circulant filter, and
let I ⊂ {1, 2, . . . , N} indicate the desired filter footprint.

Let Ω be the set of circulant filters with the desired footprint.
That is,

Ω = {X : X circulant and [x]i 
= 0 only if i ∈ I}. (5)

Our goal is to find the closest, in a Schatten p-norm sense,
positive-definite filter in Ω to the given circulant matrix G.

Satisfying both the positive-definiteness and the footprint
constraints simultaneously is challenging. In fact, the positive-
definiteness requirement (and the choice of any Schatten p-
norm instead of the Schatten ∞-norm) distinguishes this
problem from the one solved by the classical Parks-McClellan
algorithm [9]. The Schatten p-norms are convex, and the set of
positive-definite filters in Ω is convex, so we can use variable
splitting to separate the constraints and use ADMM to solve
the original problem.

Let H ∈ RN×N be a circulant matrix and Γ ∈ RN×N

be the augmented Lagrangian dual variable. With the equality
constraint H = F, we have the following saddle point problem
involving the augmented Lagrangian-like function L:

min
F∈Ω,H�0

max
Γ

L =
1

2
||H−G||pp +

μ

2
||H− (F+ Γ)||2F (6)

=
1

2

∣∣∣
∣∣∣ĥ− ĝ

∣∣∣
∣∣∣
p

p
+

μN

2

∣∣∣
∣∣∣ĥ−

(
f̂ + γ̂

)∣∣∣
∣∣∣
2

2
,

(7)

with both H and F restricted to be circulant matrices. Equation
(7) follows from the unitary invariance of the Schatten p-norms
and the fact that the argument of the Frobenius norm is always
a circulant matrix.2

Solving (7) with ADMM yields the following set of iterated
updates:

f (j+1) = projΩ
(

IDFT
{
ĥ(j) − γ̂(j)

})
, (8)

ĥ(j+1) = argmin
ĥ>0

1

2

∣∣∣
∣∣∣ĥ− ĝ

∣∣∣
∣∣∣
p

p
+

μN

2

∣∣∣
∣∣∣ĥ−

(
f̂ (j+1) + γ̂(j)

)∣∣∣
∣∣∣
2

2
,

(9)

γ̂(j+1) = γ̂(j) + f̂ (j+1) − ĥ(j+1). (10)

The f update requires only an FFT and zeroing of unneeded
coordinates, or an IFFT-like operation which efficiently com-
putes a small number of coefficients.

The h update requires that H(j+1) be a positive-definite
matrix, i.e., ĥ > 0 (in practice, ĥ ≥ ε). For all p ∈ [1,∞),
the update (9) is separable. In these cases, the problem can be
solved unconstrained, and, because each separable problem is
convex, the solution in each coordinate can then be clamped
to [ε,∞). If p = ∞, the h update is still convex but is
nonseparable. We suggest an inexact and relatively efficient
solution to the p = ∞ problem in Figure 1.

III. DENOISING PRECONDITIONER DESIGN

We could use the filter design algorithm in Section II to
replace the denoising problem’s conventional circulant pre-
conditioner with a more efficient FIR filter. In this section, we

2Both H and F are always restricted to be circulant matrices. The dual
variable update for Γ (10) with the standard initialization Γ(0) = 0 ensures
that Γ is also always circulant.
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1) Let d = max
{
ε, f̂ (j+1) + γ̂(j+1)

}
− ĝ, and

ĥ(η) = ĝ +min {|d|, η} · sign (d).
2) Compute ηmin and ηmax as the extrema of the

coordinates of |d|.
3) Perform a grid search over [ηmin, ηmax] using a

small number of points of

J(η) = 1
2η + μN

2

∣∣∣
∣∣∣ĥ(η)−

(
f̂ (j+1) + γ̂(j+1)

)∣∣∣
∣∣∣
2

2
to find η∗.

4) Return ĥ(η∗).

Fig. 1: Approximate algorithm for the �2 − �∞ h update (9).

instead propose a collection of FIR filters to model the inverse
of the Hessian in different regions of the volume.

The Hessian of the denoising problem (4) can be written

∇2Jv(v) = μvI+

Nd∑

d=1

βdCd
′D(v)Cd, (11)

where D(v) is a diagonal matrix related to the {κd,j}Nd,N
d=1,j=1

and the second derivative of the potential function φ. At the
jth voxel, we locally approximate the Hessian with a circulant
filter parameterized by a voxel-dependent scalar. That is, for
voxels k near j,

ek
′[∇2Jv(v)

]
ej ≈ ek

′
(
μvI+ αj

Nd∑

d=1

βdCd
′Cd

)
ej . (12)

The scalars {αj}Nj=1, which are used to approximate the
variation in D(v), are computed for each voxel as

αj =
ej

′∇R(εej)

ej ′
(∑Nd

d=1 εβdCd
′Cd

)
ej

, (13)

with ε > 0 small enough (on the order of 10−2 for an image
in HU) that ej ′∇R(εej)/ε approximates the diagonal of the
regularizer Hessian.

For a purely circulant filter, a single α∗ is selected (e.g.,
from the center of the volume) to form the preconditioner

(
μvI+ α∗

Nd∑

d=1

βdCd
′Cd

)−1

. (14)

In this paper, we instead now quantize the {αj}Nj=1 into P

classes, {bp}Pp=1, using e.g., the k-means algorithm. Empir-
ically, for reasonably small P , αj slowly varies over the
volume, yielding somewhat contiguous regions with similar
Hessian behavior. Motivated by this property, we propose the
following preconditioner,

Piir �
P∑

p=1

Mp

(
μvI+ bp

Nd∑

d=1

βdCd
′Cd

)−1

Mp, (15)

where the {Mp}Pp=1 are diagonal matrices with 0 or 1 entries
that partition the volume based on the voxel class assignments.
Figure 2 illustrates one such partition.

(a) Image (b) Class assignments

Fig. 2: Example class assignments from the center slice of a
volume with P = 6 classes. Note that the regions are some-
what contiguous and to a degree follow the anatomy in the
volume, due to the object-dependence of the {κd,j}Nd,N

d=1,j=1.
Each colored region will receive a different preconditioner.

As written, (15) requires a pair of FFTs for each region in
the image. This would be a significant cost for the volume de-
noising problem because gradient computations are relatively
inexpensive. We suggest replacing the circulant inverses in
(15) with a sparse FIR filter for each region designed using
the algorithm described above:

Pfir =
P∑

p=1

MpFpMp, (16)

with 0 ≺ Fp ≈
(
μvI+ bp

∑Nd

d=1 βdCd
′Cd

)−1

. This precon-
ditioner attempts to handle the spatial variance of ∇2R, but
requires no relatively expensive FFTs.

IV. EXPERIMENTAL RESULTS

The following experiments were performed on a helical
600 × 600 × 101-voxel dataset with 888 channels, 64 rows
and 2080 views provided by GE. The regularizer used 26
voxel neighbors (Nd = 13) and the Fair potential function
with δ = 10.0 Hounsfeld units:

φ(t) = δ2(|t/δ| − log (1 + |t/δ|)). (17)

All FFTs were computed using FFTW on a 2.8 GHz
Intel Core i7 CPU with 8 threads. All other operations were
performed on a NVIDIA GeForce GTX 480 with 1.5 GB of
global memory using OpenCL through PyOpenCL. All data
was kept on the GPU unless it was necessary to page a buffer
off the GPU to RAM.

We generated a 1D version of the regularizer and fit several
FIR filters to a circulant approximation of its Hessian using the
filter design algorithm in Section II. The results are given in
Figure 3, which illustrate the trade-offs, qualitatively speaking,
between different choices of Schatten p-norm and filter size.
We found that the choice of Schatten p-norm did not have a
significant effect on the convergence rate of PCG. Empirically,
the Schatten 2-norm filter design problem seemed converge
more quickly than the other choices, so we designed the filters
in our next experiment with p = 2.
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Spectra of designed FIR preconditioners

Fig. 3: Profiles of 1D filters generated by the algorithm
in Section II. The target spectrum, a preconditioner for the
denoising problem with β = 24μv , is in black. Green, blue and
red correspond to the Schatten 1, 2 and ∞ norms, respectively.
(These are the lower, middle and upper series on the LHS for
each number of taps). The solid lines are 5-tap filters; the
dashed lines are 11-tap filters.

We solved the denoising problem using PCG with several
preconditioners and with a split-Bregman (SB) like algorithm
[6]. Figure 4 shows the RMSD of each algorithm to the
converged solution as a function of time and iteration.

The shift-varying preconditioner significantly outperformed
the conventional circulant preconditioner, and replacing the
FFTs in (15) with FIR filters had nearly no effect on per-
iteration convergence rate. Remarkably, PCG with the shift-
varying preconditioner converged more quickly in time than
the split-Bregman algorithm. This is due in part to implement-
ing the split-Bregman algorithm’s FFTs on the CPU, which in-
curred GPU-CPU data transfer costs. However, to some degree
these costs are unavoidable for the split-Bregman algorithm,
due to the GPU’s limited memory and the split Bregman
algorithm’s significant memory requirement. Either way, the
space-varying preconditioner is a dramatic improvement over
the conventional circulant filter.

V. CONCLUSIONS AND FUTURE WORK

We presented an algorithm to design a positive-definite
sparse FIR filter that approximates a given circulant matrix.
In our experiments, we heuristically chose filters with dense
cubical support, but we have no guarantee that this choice
is optimal. The successive thinning algorithm [1] provides
a greedy way to select the footprint algorithmically. An-
other possible extension is to replace the Schatten p-norm-
minimization with a minimum condition number criterion, as
in [7].

Sparse FIR filters can be used as part of a space-varying
preconditioner to significantly accelerate the convergence of
PCG applied to the volume denoising problem. The resulting
algorithm is memory efficient and performs comparably to the
traditionally more rapidly converging split Bregman algorithm.
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Fig. 4: Root mean-square differences (RMSD) to the con-
verged solution of a denoising problem using (P)CG with
shift-invariant (SI) and shift-varying (SV) preconditioners im-
plemented with FFTs and 7 × 7 × 7 FIR filters, and a split-
Bregman (SB)-like algorithm. Six classes (P = 6 in (16))
were used for the shift-varying preconditioners.

However, efficient preconditioners for the 3D tomography
problem are still needed. Such preconditioners will likely need
to account for the spatial variance of A′A, and may benefit
from the locality which FIR filters provide. Early work in this
direction has already been done by Fu et. al. [5].

Finally, while the variable splitting framework used to
separate the data-fit and regularization terms has been helpful,
it may be useful to revisit frameworks which combine the two.
In this case, preconditioners that simultaneously account for
the spatial variance present in both the data-fit and regularizer
Hessians will certainly be beneficial.
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