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Abstract-Statistical image reconstruction in X-ray CT can 
provide decent images even with low dose, but requires substan­
tial computation time. Recently, we have proposed combining 
ordered subsets (OS) methods and Nesterov's momentum tech­

nique for accelerated X-ray CT image reconstruction. We have 
observed rapid convergence speed of the proposed algorithms in 
our experiments, but sometimes encountered unstable behavior. 
Therefore, we introduce a diminishing step size rule, called a 
relaxed momentum approach, to stabilize the algorithm, while 
preserving the fast convergence rate. We use a real 3D CT 
scan to show that the proposed approach can achieve both fast 
convergence rate and stability. 

I. INTRODUCTION 

We reconstruct a (nonnegative) image x E lRZP from 

a noisy measured sinogram data y E lRNd by minimizing 

a convex and continuously differentiable objective function 

w(x), based on the statistics of X-ray CT. This paper focuses 

on a penalized weighted least squares (PWLS) cost function 

[1]: 

x = argmin {W(X) � 
�
IIY - Axll� + R(X) } , (1) 

x�O 2 

where A is a projection operator [2], a diagonal matrix W 
provides statistical weighting [3], and R(x) is a (nonquadratic 

and edge-preserving) regularization function. 

Iterative algorithms require long computation time for min­

imizing the 3D CT cost function W (x) in (1). Previously 

in [4], we applied Nesterov's momentum method [5] to ordered 

subsets based on separable quadratic surrogates (OS-SQS) 

algorithms [6], [7] for accelerated convergence rate (without 

increasing the computational cost per iteration). However, we 

observed some undesirable instability of the accelerated OS 

algorithm in some cases. Thus, in this paper, we investigate 

the diminishing step size rule suggested in [8] to suppress the 

accumulation of error coming from OS methods. 

The convergence analysis of accelerated stochastic gradient 

methods with momentum is proposed in [8], where a dimin­

ishing step size rule provides stabilized convergence even with 

momentum. In this paper, we treat OS-SQS methods as diago­
nally preconditioned stochastic gradient methods, and propose 

to adapt the convergence analysis and the diminishing step size 

rule in [8], which we call a relaxed momentum approach. We 

investigate various schemes for relaxing momentum to achieve 

overall fast convergence rate (with stability). We use a real 3D 
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phantom scan to verify the stabilizing behavior of the proposed 

method. 

II. STOCH ASTIC OS-SQS ALGORITHM 

In 3D CT, both forward and back projections A and A' 
become a computational bottleneck. So, we usually prefer OS 

algorithms [9] that use only a subset of a measurement data 

to reduce the computation per image update. In other words, 

OS methods define the subset gradient: 

\7wm(x) � A�Wm(Amx -Ym) + � \7R(x) (2) 

for m = 0, ... ,M - 1 where M is the number of subsets, and 

Ym, Am, and W m are sub-matrices of Y, A and W. Then, OS 

methods use the subset gradient M\7wm(x) (with a scaling 

constant M) instead of \7W(x) to reduce computational cost. 

This enables approximately 1\1/ times accelerations in run time 

for early iterations when the following holds 

(3) 

Larger M would be preferable for faster initial convergence, 

but OS methods will reach larger limit-cycle that loops around 

the optimum [10], due to the increased discrepancy between 

\7W(x) and M\7wm(x). 
We can view OS methods in a stochastic sense by defining 

M\7wsk(x) as a stochastic estimate of \7W(x), where a 

random variable Sk at kth iteration is uniformly chosen from 

{O, 1, ... ,M - I}. This stochastic OS algorithm combined 

with SQS method [6], [7] is illustrated in Algorithm 1, where 

D is a diagonal majorization matrix that satisfies 

1 w(x) � w(x) + \7W(x)'(x - x) + "2llx - xl11 (4) 

for all x, x E lRZp• The matrix D can be computed using a 

Lipschitz constant or SQS methods [6], [7]. The notation [.]+ 
enforces the non negativity constraint by clipping the negative 

values to zero. 

The stochastic estimate 1\I/\7w Sk (x) of the exact gradient 

\7w(x) in Algorithm 1 satisfies: 

ESk [M\7wSk (x)] = \7W(x) (5) 
ESk [IM\7jWSk (x) -\7jW(X)12] � a}, Y j, (6) 

for k = 0, 1,2, ... and x E B where B is a bounded feasible 

setl, \7j � fJ/fJXj, and we define a matrix � � diag{oj}. 
The property (6) for a diagonally-preconditioned stochastic 

I The property (6) holds if x is in a bounded set. We derive a bounded 
feasible set B including the optimum x from the measurement data y based 
on [10, Section A.2], and implicitly enforce the generated sequences of the 
algorithms to be within the set. 



Algorithm 1. Stochastic OS-SQS algorithm. 

1: Initialize x(O) and compute D. 
2: for n = 0,1,2" .. 
3: for m = 0,1"" ,M -1 
4: k = nM +m 
5: Compute V'1l1�k(xh1jr)), where �k is a realization of Sk. 
6: X(kt/l = [x(ir) - D-IMV'Il1�k(x(ir))L 
7: end 

8: end 

OS-SQS algorithm is a slightly generalized version of the 

property of stochastic gradient in [8]. We use these properties 

for the convergence analysis of the proposed algorithms in next 

section. Even though it is impractical to estimate the value of 

<7j, it is obvious that the elements of matrix � = diag{aj} 
become small by appropriately grouping the subsets and using 

small M. 
Recently, we have combined OS-SQS algorithm and Nes­

terov's momentum approach [5], called OS-SQS-momentum, 

significantly accelerating X-ray CT image reconstruction [4]. 
However, we experienced the accumulation of stochastic error 

� of OS algorithm that leads to unstable convergence behavior. 

Thus, we adapt a diminishing step size rule developed for 

stochastic gradient method with momentum for our OS-SQS­

momentum algorithm. In next section, we introduce and extend 

the result in [8] for minimizing X-ray CT cost function (1) 
rapidly and efficiently. 

III. STOCH ASTIC OS-SQS ALGORITHM WITH REL AXED 

MOMENTUM 

A. Algorithm 

Algorithm 2. Stochastic OS-SQS algorithm with momentum. 

0· D fi r(k).£ d' {(k)} - 1 d .£ ')')k) . e ne - lag 'Yj , ao - , an ak - maxj ')'(k-1) . 
J 

1: Initialize x(O) = v(O) = z(O), to = 1, and compute D. 
2: for n = 0,1,2" .. 
3: for m = 0,1"" ,M -1 
4: k = nM +m 
5: Compute V'1l1�k(Z(ir)), where �k is a realization of Sk. 

(k) {r(O)>-D k=O 6: Choose r S.t. r(k) � r('k-l), k > ° 

7: tk+1 = 2�k (1 + Jl + 4tkakak+1) 
8: x(�) = [z(ir) -[ r(k)]-lMV'Il1�k(Z(ir))L 
9: V(kt/) = [z(O) -[ r(k)]-l �7=0 tl

MV'Il1�Jzh�r))L 
10: z(�) = (1- ttn ) x(�) + ttN v(�) 
11: end 

12: end 

�,�o t, �,�o t, 

Algorithm 2 illustrates a generalized version of OS-SQS­

momentum methods, where the algorithm reduces to the previ­

ously proposed version [4, Fig. 4] when we use a deterministic 

subset ordering Sk = (k mod M) and a fixed diagonal matrix 

r(k) =D. (7) 

For NI = 1, the algorithm with these "conventional" choices 

can be proven to satisfy 

k+l 21Ix(0) - £112 ll1(x(1'\1)) -1l1(£) < D (8) - (k + 1)(k + 2) 
by generalizing the derivation in [5]. By applying OS algo­

rithm with M > 1, we were able to achieve M2 acceleration 

in early iterations [4], by replacing k with nM +m considering 

the computational cost in OS algorithm. Note that the com­

putation cost of Algorithm 2 is similar to that of Algorithm 
1 even though it looks more complicated, because it uses one 

full projection and back-projection per outer iteration (n) as 

Algorithm 1. 
However, for M > 1, the analysis in [8] (with a stochastic 

variable Sk) illustrates that the choice (7) might suffer from 

the accumulation of error from OS methods as: 

E[Il1(x(�)) -1l1(£)] < 21Ix(0) - £111 + (k + 3)tr{P�} 
- (k+l)(k+2) 3 ' 

(9) 

where the matrix P £ diag{pj £ maxx,xEB IXj - Xjl } mea­

sures the diameter of the feasible set B. The error � coming 

from OS method affects the last term in (9), which we want 

to suppress to improve stability. 

Using the larger fixed r(k) = qD with q > 1 did not 

help prevent the accumulation of error [8]. Therefore, to better 

stabilize the algorithm, here we adapt the relaxed momentum 

approach in [8] that increases the denominator in Algorithm 
2 as follows: 

r(k) = D + (k + 2r r (10) 
for any choice of a constant c ::::: ° and a diagonal matrix 

r >-0. With the properties (5) and (6), we can achieve the 

following inequality (11) by extending the result in [8]: 
( 
k+l) Lemma 1: For a constant c E [0,2]' the sequence {x 1'\1 } 

generated by Algorithm 2 with (10) satisfies 

E[Il1(X(
k
,tl)) -1l1(£)] < (max yI(il) [ 21IX(0) - £111 

- O�l�k l (k + 1)(k + 2) 

21Ix(0) - £11f, 2(k + 3)3-Ctr{ r-l�2} ] + (k + 1)(k + 2)1-c + (3 - c)(k + 1)(k + 2) . (11) 

Proof See the proof in [11]. • 
The coefficient c controls the rate of accumulating error 

in (11), and we investigate the choices of c in next section. 

B. The choice of c 

Among the possible choices of c E [0, 2], we consider 

two cases c = 1 and c = 1.5 for better understanding of 

the convergence analysis in (11). 



We first consider the choice c = 1 that provides the rate 

(21IX(O) - xl11 21Ix(O) - xllf, tr{r-1�2} ) 
o k2 + k + 2 

(12) 

on average. This choice prevents the accumulation of error 

but does not guarantee convergence on average. We can 

understand from (11) that the coefficient c should be larger 

than 1 to decrease the accumulated error. 

We also consider the choice c = l.5 that provides a rate 

(21Ix(O) - xl11 21Ix(O) - xllf, 2tr{r-1�2} ) 
o k2 + � + � (13) v k l.5v k 

and converges on average, but somewhat slower than (12) in 

early iterations considering the larger constant maxO::;l::;k val 
in (11) for same r. The choice c = l.5 provides the optimal 

rate of decrease 0(1/ Vk) of the stochastic noise for the first­

order methods [8], [12]. The parameter c that is larger than l.5 
seems not useful as it does not have the optimal convergence 

rate. 

In the result section, we consider the choices c = 1 
and c = l.5 providing the rates (12) and (13). An optimal 

choice of matrix r providing fast convergence rate based 

on (11) remains unknown in practice, so we provide a practical 

approach to choose a reasonable r in the result section. 

Overall, the proposed relaxed momentum approach will 

eventually reach smaller cost function value than the previous 

(unrelaxed) choice r(k) = D (or r = 0) in (7), since 

we prevent the accumulation of error from OS methods by 

increasing the denominator r(k) as (10 ). In other words, the 

algorithm with M >  1 and the relaxation (10) may be slower 

than the choice of (7) initially, but eventually becomes faster 

and reaches closer to the optimum on average. 
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IV. RESULTS 

We used a helical cone-beam CT scan of the GE per­

formance phantom (GEPP) to examine the performance of 

proposed OS algorithm with relaxed momentum, We recon­

structed a 512x 512x47 image of GEPP from a 888x64x3071 
noisy sinogram data measured in a helical geometry with pitch 

0,5. 
We used M = 24 for OS methods. The convergence 

analysis in Section III was for stochastic subset ordering in 

OS methods, but we used the deterministic order of subsets 

suggested in [13] here, which is known to be a good choice in 

tomography problems.2 We leave the more detailed discussion 

of stochastic OS methods for the upcoming work in [ll]. 
The matrix r in (10) controls the constant of the conver­

gence rate in (11). Here, we use the following 

r ='Y D (14) 

for'Y > O. (The matrix D generated by [6] for this experiment 

has maximum value 6,3 x 1012 and median l.1 x 1011.) The 

matrix r can be better optimized if we know � and the 

distance between x(O) and x for each voxel based on (11), 
which we will further discuss in [11]. Here, we simply tuned 

the parameter 'Y in (14) within {O, 10-5, 10-4, 10-3, 1O-2}. 
Fig. 1 shows the root mean square difference (RMSD) 

between the current and converged image within the region­

of-interest (ROI) in Hounsfield Units (HU), versus iteration: 

RMSD(x(n)) = Ilx�61 - XROIII/ VNp,ROI, (15) 

where Np,ROI is the number of voxels within the ROI. We 

count one iteration per 24 sub-iterations (m) for NI = 24 
2We found that the subset ordering in [13] greatly prevents the accumulation 

of error from OS in the proposed algorithm, compared to other subset 
orderings. For the case shown in Fig. 1, the unrelaxed version ("I = 0) of 
OS-SQS-momentum using a random subset ordering becomes highly unstable 
in Fig. J(b) as discussed in (9), whereas the algorithm using the subset 
ordering in [13] behaved relatively stable as seen in Fig. I(a). 
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Fig. I. Plots of RMSD versus iteration. Computing the matrix D in [6], [7] requires one each forward and back projection and this resulted in no updates 
at the first iteration. 
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Fig. 2. Top: center slice of FBP image x(O), converged image X, and reconstructed images at 20th iteration. Bottom: center slice of difference images 
between the reconstructed and converged image. (Images are cropped for better visualization.) 

by considering the computational cost in OS algorithm. The 

plots illustrate that the all momentum approaches accelerate 

the OS-SQS algorithm. We can further verify that the relaxed 

momentum approach becomes more stable and reaches nearby 

the optimum with a slight sacrifice on the initial convergence 

rate, compared to the unrelaxed version (1' = 0). The choice 

c = 1 and l' = 10-2 provided the fastest overall convergence 

rate among other choices in this experiment. However, pa­

rameter tuning of c and r needs to be further (automatically) 

optimized to achieve robust fast convergence rate, which we 

further discuss in [11]. 

In Fig. 1, the choice c = 1.5 performed worse than the 

choice c = 1 even though we expected the case c = 1.5 
to achieve the optimal asymptotic rate of decreasing the 

stochastic noise component of the upper bound on the cost 

function decrease in (11). As mentioned before, this was due 

to the larger constant maxO:Sl:Sk val for larger c in (11) that 

slowed down the initial convergence. But, we observed that the 

choice c = 1.5 is in decreasing phase even after 20 iterations 

while c = 1 reaches nondecreasing phase after 15 iterations as 

discussed in (12). So, this gives a room for further investigation 

on using c = 1 initially and switching to c = 1.5 after first 

few iterations, which we leave as a future work. 

Fig. 2 presents the initial filtered back-projection (FBP) 

image x(O), the converged image X, and reconstructed images 

at 20th iteration. We can observe the improvement using 

the relaxed momentum by looking at the difference images 

in Fig. 2, where the proposed method reduced the noise 

texture. However, the relaxed momentum method had not yet 

finished updating some structures as seen in Fig. 2. This raises 

the need of a voxel-dependent r using Ix)O) - Xj I and IJ'j for 

each jth voxel based on (11). These are unavailable in practice, 

but some heuristic methods such as an idea in [7] might be 

useful, which we will investigate in [11]. 

V. CONCLUSION 

In this paper, we attempted to stabilize the OS-momentum 

algorithm that were previously found to have fast convergence 



rate but unstable in some cases. We adapted the relaxation 

scheme of momentum approach to prevent the accumulation 

of error while preserving the rapid convergence speed, which 

we verified on a real 3D CT scan. 

The tuning parameter c and r that we used in the result 

section was suboptimal, and we plan to investigate better 

choices in near future. 
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