The 12th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

Space-Variant Channelized Preconditioner Design for
3D Iterative CT Reconstruction

Lin Fu, Zhou Yu, Jean-Baptiste Thibault, Bruno De Man, Madison G. McGalffin, and Jeffrey A. Fessler

Abstract- Preconditioners, especially diagonal ones, have been
key ingredients in several state-of-the-art optimization
algorithms for transmission and emission tomographic image
reconstruction. But it remains challenging to design robust,
non-diagonal preconditioners that can account for various
space-variant factors such as fan-beam/helical sampling
geometry, non-uniform statistical weights, and object-dependent
regularization. In this study, we propose a channelized
preconditioner design that decomposes a preconditioner into
multiple channels that represent different frequency sub-bands
and/or orientations. Each channel is associated with a spatial
weighting map to modulate its gain at different spatial locations.
The multi-channel design has the potential to provide more
degrees of freedom in controlling the localized spectral response
of the preconditioner without incurring excessive computational
overhead. Initial application to maximum a posteriori
probability image reconstruction from helical x-ray CT data is
presented here.
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1. INTRODUCTION

Model-based iterative reconstruction (MBIR) techniques for
x-ray computed tomography (CT) have been developed over
a decade ago [1], [2], but have only been recently introduced
commercially on multi-slice clinical CT scanners. Based on
the principles of maximum a posteriori probability (MAP)
estimation, the model-based approach improves multiple
aspects of image quality, and has demonstrated potential dose
savings in recent clinical trials compared to the conventional
filtered  backprojection (FBP) method and other
state-of-the-art CT reconstruction methods [3], [4].

Due to the complexity of various geometrical, physical, and
statistical models being employed by MBIR, and the large
size of data acquired by today’s multi-slice CT scanners, the
computational cost of MBIR remains a major impediment to
its widespread use in clinical environments. It is a topic of
growing interest to develop accelerated MBIR algorithms.
This study will focus on gradient-based simultaneous-update
optimization algorithms, which have relatively high level of
parallelism and could potentially take full advantage of
many-core computing devices.
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Standard gradient-based iterations usually converge slowly
for large-scale ill-conditioned problems. Effective precondi-
tioning techniques are essential for their acceleration and
practical success. Various forms of preconditioners have been
studied in the context of iterative tomographic reconstruction.
Diagonal scaling matrix is the simplest form of precondition-
er. Several widely used iterative algorithms in emission and
transmission reconstruction can be viewed as diagonal-
ly-preconditioned gradient descent algorithms (for instance
EM [5], [6], SQS [7], and ML-TR [8]). Diagonal precondi-
tioners are also commonly combined with other optimization
algorithms such as conjugate-gradient to achieve more
significant acceleration [9—11]. Despite their effectiveness
and robustness, diagonal preconditioners are considered
relatively conservative approximations to the inverse of the
Hessian matrix and can only provide suboptimal acceleration.

Non-diagonal, Fourier preconditioners have the potential to
address the off-diagonal structure of the Hessian. Such
preconditioners are also attractive because of their close
connection to the ramp-filter used in FBP reconstruction.
These preconditioners can bring dramatic acceleration for
space-invariant problems [12], but they are less effective for
space-variant reconstruction due to factors such as irregular
geometric sampling, non-uniform statistical noise modeling,
and location-dependent image priors.

To improve convergence rates in space-variant reconstruc-
tion, Booth and Fessler proposed a preconditioning technique
based on the product of a Fourier kernel and a particular
diagonal matrix [11]. Such combined preconditioner yields
significantly faster convergence than either Fourier or
diagonal preconditioning alone. In a subsequent work, the
Fourier component was further generalized by interpolation
among multiple FFTs to provide more effective handling of
space-variant regularization strength [13]. More recently,
operator splitting methods has been proposed for precondi-
tioners to better address shift-variant problems [14], [15].

Some promising results have recently been reported in
applying preconditioning techniques to accelerating CT
MBIR [16]. It will be of great interest to develop more
effective and efficient preconditioners for multi-slice medical
CT systems where the geometric sampling can be incomplete
or truncated, and the statistical noise is highly anisotropic. To
properly account for the space-variant effects, we would need
a sufficient degree of freedom in controlling the local
frequency response of the preconditioner without incurring
excessive computational overhead. In this study, we propose
a channelized preconditioner design, in which the precondi-
tioner is decomposed into different channels representing
different frequency sub-bands and/or orientations. A spatial



The 12th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

weighting map is applied to each channel to modulate its gain
at different locations. While single channel may be restrictive
in modeling space-variant frequency response, the combina-
tion of multiple channels may provide a sufficient degree of
freedom in controlling the local frequency response without
incurring excessive computation overhead.

I1. THEORY
A.  MAP cost function

One approach to statistical image reconstruction in x-ray
CT uses a MAP cost function in the form of

P(x) =—-L(Ax;y) + U(x),

where x = {xy, ..., xy} denotes the vector of unknown 3D
image space; y = {yy,..,Yy} is the vector of sinogram
measurements; A € RM*Y  denotes the system matrix;
—L(:,) is the negative log likelihood term that penalizes the
inconsistency between the estimated projection data and the
physical measurements; U(x) is the regularization function
that penalizes the noise in the image.

In this study, we use Gaussian log likelihood function with
the noise covariance matrix W' and L(Ax,y) =

- % (y —Ax)TW(y — Ax). The regularization function
U(x) is expressed by a Markov Random Field (MRF) in the
form of Ux) = ZkeNj‘bj a)jkp(xj —x), with N;
denoting the collection of the neighboring pixels for location
J» wji representing the penalty strength between pixel j and
k, and p(-) being a prior potential function. We use the

q-GGMRF prior with p(A) = Ll and 1<qg<p<2

—aPq
1+|é|
c

to ensure convexity [2].
B.  Hessian matrix and local spectral analysis
The Hessian matrix for the MAP cost function is
H(x) 2 V20(x) = ATWA + V2U ().

We would like the preconditioner M to be an effective
approximation to the inverse of the Hessian matrix, so that
MH = I, or the condition number of MH be minimized. This
direct matrix optimization problem seems not tractable so
approximations have to be used.

Based on the concept of local shift invariance [17], [18], it
is generally assumed that the Hessian matrix is locally
block-Toeplitz, so that it can be approximately diagonalized
by Fourier transforms. The local spectral representation of
H(x) at the location of the jth pixel is

h/(x) 2 H(x)e’
= Q"diag{4/ + 1/ (x)}Qe’,

where h/(x) is the jth column of H(x); e’/ is the jth
unit vector; Q represents a discrete Fourier transform; A/

and p/ are the Fourier transforms of the jth column of
ATWA and V2U(x), respectively.
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A = diag{Qe’} Q[ATWAEe’],

1 (x) = diag{Qe’} ' Q[VZU (x)e’].
The term diag{Qe’}~' adds the appropriate complex
exponentials.

C. Ramp-filter based preconditioner

In a previous study [16], we designed a ramp-filter based
preconditioner based on the combined diagonal/circulant
formulation proposed by Fessler and Booth [13]. In this study,
we implement a similar but improved design, and will
compare its performance to the channelized preconditioner to
be introduced in the next few sections. The ramp-based
preconditioner in this study takes the form of

Mramp = diag(Aj)_leiag(Af)_l‘

where K is a space-invariant isotropic Fourier kernel, and
Aj is a particular spatial weighting factor that makes the
preconditioner space-variant [13]. The filter kernel K is
designed based on a continuous-space approximation to the
matrix spectra A/ and g/ [19]. The frequency response of
the filter resembles an apodized ramp-filter

1

Ko 22.2 -
|f|+5o+<z> sin“(mf);

where —0.5 < f < 0.5 is normalized digital frequency, and
Ay, 6y, and Kk, are parameters to adjust the shape of the
frequency response. The filter kernel can be adjusted to
match the Hessian only at a single location, thus it is
restrictive in modeling highly space-variant system response.

K(e/?™f) = {

D. Channelized preconditioner

To provide more degrees of freedom in approximating the
space-variant factors in the Hessian, we propose a channel-
ized preconditioner design, in which the preconditioner
consists of K predetermined frequency channels:

M(x) = ) diag{t, (x) )My diag{ti (),
k=1

where each channel represents a frequency sub-band and/or
spatial orientation. M, is a positive-definite filter that
defines the frequency response of the kth channel, and t;
is a spatial weighting map that modulates the gain of the kth
channel at different locations. By splitting the preconditioner
into different channels, we could control the gain of each
channel independently, which gives the potential to
incorporate more space-variant effects. The ramp-based
preconditioner introduced earlier can be viewed as a special
case where a single high-pass channel is used.

E.  Channel design

To design the channelized preconditioner, we first deter-
mine the number of channels and the frequency response of
each channel. The channels are like basis functions. More
channels will improve the frequency resolution but also
increase design complexity and computational overhead. In
this initial study, making no attempt to optimize the channel
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design in general, we explore the possibility of using only
three channels (K = 3). These channels could be implement-
ed in either frequency domain or space domain. Here we
propose image-space kernels with very small footprint
(3x3x3), which has less computational overhead than
implementing these kernels in Fourier space.

[0 0 O 0 0 0
KerM; =4(0 0 0] [2 12 2] [0 0 0]}
0 0 0 0 0 0
-1 -2 - -1 -2 -1
KerM, = {[-2 =2{,[—4 24 - —2 12 —2]}
1—1 —2 =2 —2 1
1 2 4
KerM; =42 —-12 ] [ 4 24 ] [ —-12 2]}
11 2 —4

The first channel represents low frequency in plane (x-y).
The second one represents high frequency in plane (x-y) and
low frequency across plane (z). And the third one represents
high frequency both in plane (x-y) and across planes (z).
These channels are approximately isotropic, i.e., no angular
preference. However it is possible to design channels with
different spatial orientations to account for anisotropic effects
in the Hessian. This will be a potential topic for further
investigation. As will be shown in the initial results here,
even the relatively simple three-channel design can provide
significant improvement over the conventional diagonal or
combined diagonal/circulant preconditioners.

F.  Spatial weighting design

Now we will design the spatial weighting t, associated
with each channel. We would like to design t; so that

M(x)H(x) =

In local spectral representation, this condition becomes

K

[QT (Z tﬁ;diag{vk}> Ql [Q"diag{4/ + p/ (x)}Q] ~ L,
k=1
where v, denote the Fourier transform of M,, i.e, M) =
Q"diag{v,}Q, and t;; is the jth element of the t;,
representing the spatial weighting for the kth channel at

location j. After simplification, we obtain a system of linear
equations that ¢, should satisfy:

K

Y VoW + W@~

k=1

where “ (O ” denote element-wise multiplication. This
condition means we would like the preconditioned problem to
have a “flat” spectrum. The equation is over-determined and
does not have a strict solution. Although various generalized
inverse or optimization based methods may be used to solve
such an over-determined problem, here we propose to find an
approximate solution that only satisfies the equations at K
frequency samples, f; ... fx.In matrix form this yields

|:V}1 le:| (AJ +H1)t1]
VKl e

(% +u1<)tJ [ l
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where vy 2vi(fi) . G2 V(f) . 2w Frx)
Assuming the frequency channels are linearly independent,
the solution is obtained by inverting the K-by-K matrix

1[:1”12[[ t) {l lk}
I’].K\ ‘1|
Vkk 1

; ; -1
[tul A{ + H{ [Vll
t W+ e

If the channels have good frequency separation, we may
further assume the K-by-K matrix is approximately diagonal,
which yields a simple approximate solution:

1
A+ ) viae

Computlng t,s using the above expression still requires

2
tjk—

AL + 1] be obtained first. Efficient methods to compute A/
have been proposed, where computation may be performed
only at sparsely sampled locatlons and then be interpolated to

others [20][21]. /1 and ,uk may also be obtained using
continuous-space approximations.

The spectral coefficients A/ are not only space-variant but
also anisotropic due to the high dynamic range of the
statistical weights W. Since we are only using approximately
isotropic channels in this initial study, we design the
preconditioner by matching the frequency response in the
angular direction associated with the strongest statistical
weights. This is a more conservative choice compared with
matching the averaged frequency response over all angular
directions, and helps make the preconditioner more robust.
We may also apply empirical adjustment to gain of the
spatial-frequency channels. For example, we may reduce the
gain of high frequency channels in the regions where the
sampling is incomplete and the Hessian is highly
space-variant.

III. APPLICATION TO HELICAL CT DATA

We tested the algorithms using a chest scan acquired on a
64-slice GE HD750 CT scanner at 120 kV with a helical pitch
of one. The reconstruction field-of-view was 70 cm in
diameter and 8.5 cm in Z direction, with image matrix size of
600 x 600 x 136. We compared the convergence rates of four
numerical algorithms: standard conjugate-gradient (CG), CG
with separable quadratic surrogate (SQS) preconditioner [7],
CG with ramp-based preconditioner, and CG with the
proposed 3-channel preconditioner. All algorithms are
initialized with standard FBP reconstructions and run with 10
iterations. An approximately fully converged reference
reconstruction is  generated by 20 iterations of
non-homogenous iterative coordinate descent (ICD) [2], [22].

Sample images reconstructed from different methods are
shown in Figure 1. At only 10 iterations, the proposed
channelized preconditioner generates images that have
similar visual quality as the reference MBIR solution, while
other reconstruction methods show less satisfactory image
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quality. Figure 2 shows the image-domain L2 distance to the
reference solution as a function of iteration number. The
channelized preconditioner clearly achieves the fastest
convergence rate.

Figure 1. Sample reconstructions with different methods. All reconstructions
are initialized with the FBP image. Display window = [-200 200] HU.
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Figure 2. Convergence curves.

IV. SUMMARY AND DISCUSSION

We have presented a channelized preconditioner design for
CT MBIR problems. In the proposed design, the channels
represent different spatial frequency sub-bands, and the gain
for each channel is space-variant and independently
modulated by a spatial weighting map. The introduction of
the multiple channels has the potential to provide more
degrees of freedom in approximating space-variant factors in
the Hessian matrix. Compared to the channelized design, the
conventional diagonal preconditioners can be viewed as a
single all-pass channel, while the ramp-based preconditioner
can be viewed as a single high-pass channel, both being
special cases of the proposed channelized design.

Unlike previous methods based on FFTs which aim to
model the frequency response accurately, we recognize the
tradeoff among frequency resolution, space-variance, and
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computational cost, and used very small 3x3x3 precondition-
er kernels which bring little computational overhead to MBIR.
The new algorithm is tested with helical CT data and
effective acceleration compared to other conventional types
of diagonal and Fourier preconditioners is illustrated.
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