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Alternating Direction Method of Multiplier for
Emission Tomography with Non-Local Regularizers
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Abstract—The ordered subset expectation maximization
(OSEM) algorithm provides a fast image reconstruction method
for emission and transmission tomography such as SPECT,
PET, and CT by approximating the gradient of a likelihood
function using a subset of projections instead of using all
projections. However, for computationally expensive regularizers
such as patch-based non-local (NL) regularizers, OSEM does not
help much to improve the speed of reconstruction because one
evaluates the regularizer gradient for every subset. We propose
to use variable splitting to separate the likelihood term and
the regularizer term for penalized emission tomographic image
reconstruction problem and to optimize it using the alternating
direction method of multiplier (ADMM). This new scheme allows
us to run more sub-iterations for the optimization related to the
likelihood term. We evaluated our ADMM for 3D SPECT image
reconstruction with the patch-based NL regularizer that uses
the Fair potential. Our proposed ADMM improved the speed of
convergence substantially compared to other existing methods
such as gradient descent, EM and OSEM using De Pierro’s
approach, and the Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS-B) algorithm.

Index Terms—ordered-subset expectation-maximization, non-
local regularizer, emission tomography, alternating direction
method of multiplier

I. INTRODUCTION

Statistical image reconstruction methods such as the
expectation-maximization (EM) algorithm can improve quality
of images for emission tomography such as PET and SPECT
as compared to the analytical image reconstruction such as
the filtered back-projection (FBP) [1]. It started to be used
widely in clinics and in commercial PET and SPECT scanners
after the fast algorithm called ordered-subset expectation-
maximization (OSEM) was developed [2]. By approximating
the gradient of a likelihood function using the subset of
projections instead of using all projections, OSEM algorithm
performed faster image reconstruction. This approximation
has been used for unregularized emission tomographic image
reconstruction [2] and regularized emission and transmission
tomographic image reconstruction using simple quadratic or
edge-preserving regularizers. Since the computation cost for
these regularizers is fairly low compared to that for the

This work was supported in part by NIH grant 2RO1 EB001994.

Se Young Chun was with the University of Michigan, Department of EECS
and Radiology, Ann Arbor, MI 48109-2122, USA, and is now with Ulsan
National Institute of Science and Technology (UNIST), Department of ECE,
Ulsan, South Korea. (e-mail: delight@umich.edu, sychun@unist.ac.kr).

Yuni K. Dewaraja is with the University of Michigan, Department of
Radiology, Ann Arbor, MI 48109-2122, USA. (e-mail: yuni@umich.edu).

Jeffrey A. Fessler is with the University of Michigan, Department of EECS,
Ann Arbor, MI 48109-2122, USA. (e-mail: fessler@umich.edu).

62

likelihood term, the OSEM algorithm could often also speed
up penalized likelihood (PL) image reconstruction.

Recently, patch-based non-local (NL) regularizers have been
proposed that improve image quality compared to other con-
ventional regularizers such as quadratic or edge-preserving
functions in general image processing [3], PET reconstruc-
tion [4], and MRI reconstruction [5]. The same principle has
been used for emission image reconstruction or super resolu-
tion using high resolution CT or MRI side information [6]-[9].
For emission tomography problems such as [4], [7]-[9], many
optimization algorithms were used for image reconstruction
such as the gradient descent (GD) [8], the EM (or OSEM)
algorithm from the optimization transfer using De Pierro’s
lemma [4], the EM algorithm using one-step late approach [9],
and the quasi-Newton algorithm called the Limited-memory
Broyden-Fletcher-Goldfarb-Shanno with a box constraint (L-
BFGS-B) [7]. Since the computation cost of the NL regular-
izers is very high compared to that of the likelihood, the OS
does not help much to improve the convergence rate of PL
image reconstruction.

In this paper, we propose to use variable splitting to separate
the likelihood term and the regularizer term for penalized
emission tomographic image reconstruction problem and to
optimize it using the alternating direction method of multipli-
ers (ADMM). This new scheme allows us to run more sub-
iterations for the optimization related to the likelihood term.
There have been some methods to use a variable splitting for
the data fidelity term and the regularizer term [3], [10]-[12].
However, these previous methods split the variable to deal
with non-smooth regularizers such as the total variation and to
solve the sub-problem related to the regularizers using efficient
methods such as shrinkage. Our proposed variable splitting has
different motivation. We divide the original optimization into
a few sub problems and we update the sub problem related to
the NL regularizer less often.

We evaluated our new ADMM for 3D SPECT image recon-
struction with a patch-based NL regularizer that uses the Fair
potential [4]. Our XCAT phantom-based simulation [13] shows
that our proposed ADMM improved the speed of convergence
substantially compared to existing methods such as GD, EM
and OSEM using De Pierro’s approach, and the L-BFGS-B
algorithm.

II. METHOD
A. Statistical image reconstruction for emission tomography

Statistical image reconstruction methods for emission to-
mography yield better image quality than non-iterative algo-
rithms. The usual form of statistical image reconstruction is
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to perform the following constrained optimization with respect
to an image f:

(1

~

f £ argminL(y|f)
720

where y is a measured sinogram data and L. denotes a negative
Poisson log-likelihood function. The negative Poisson log-
likelihood for emission tomography is defined as follows:

L(y|f) = Z?i(f) —yilog g (f) (2)

where y; is the ¢th element of the measurement y and

9i(f) = [Afli + s
where A denotes the system model and s; is a scatter
component for the ith measurement.

For SPECT imaging, we can incorporate an attenuation
map and a depth-dependent point spread function model
including penetration tails [14] in the system matrix A. In
our simulation, we assumed known s;, but in practice, this
scatter component can be estimated by using a triple energy
window (TEW) method or by Monte Carlo methods [15].

Unregularized image reconstruction in (1) is ill-posed. In
this case, converged recontructed images are very noisy. There
are usually three approaches to deal with this noise: First
of all, one can stop iteration before convergence. However,
more iteration may be necessary for recovering high-frequency
information (e.g. details) of image. Secondly, one can use
a post-reconstruction filter (e.g., Gaussian filter) to reduce
noise. Lastly, one can add a regularizer to (1) (e.g., quadratic
roughness penalty, non-local regularizer). When using non-
local regularizers for 3D images, the computation-complexity
is usually very high.

B. Non-local regularizer

Recently, NL regularizers have been shown to yield high-
quality images in many image reconstruction problems [3]-[5],
[16]. A NL regularizer R can be added to (1) as follows:

fe argmin L (yf) + FR(S) (3)
where [ is a regularization parameter and
R(f) 2 > p(IN:f = N;fIIP), )

1,7E€Q;
| - |l is the Lo norm, IN; is an operator on the image f such
that IN; f is a vector of image intensities that are on the cube-
shaped patch around the ¢th voxel, and p is any potential
function. A typical choice for the function p is [3], [16]

IINifNjf|2>

QJ?Nf
where f is an initial image from any analytical image recon-
struction (e.g., filtered back projection) [16] or an estimated
image from the previous iteration (") [3]. In this case, p
depends on ¢ and j. Yang et al. proposed to use a few non-
convex potentials including the Welsh potential [17]

p(t) = o2 (1—exp (— ! ))

QO'fQNf

t

SN (6))

p(t) = exp (

(6)

63

Wang et al. proposed to use the Fair potential [18], [19]

[t [t
( ﬁ“rlog(l-‘r ﬁ)) (7

Note that both (6) and (7) do not depend on an initial image
and (7) is convex while (6) is non-convex. It has been reported
that non-convex functions yielded better image quality than a
convex function [5].

We can also design NL regularizers that can incorporate
high-resolution side information such as CT or MR im-
ages [7]-[9] for better image-quality. In this paper, we focus
on the Fair potential in (7), but the proposed algorithm can be
applied to any regularizer.

of

p(t)

C. Alternating direction method of multipliers

We split the variable for the likelihood term and the reg-
ularizer term by replacing (3) with the following equivalent
constrained optimization problem:

fa argminL(y|f) + fR(u), sub. tou=f. (8)
F=0,u
By adding the augmented Lagrangian term, (8) becomes

L(If) + BR(w) + 5|1 —u - d| ©)

where 1 is a scalar value (design parameter) and d is a
Lagrangian multiplier vector.

We can solve this optimization problem (9) by using the
ADMM algorithm [20], [21] as follows:

For n=0,1,2,---
uw™* ¢ argmin g Ju— ™ +d™|? + BR(u) (10)
u
FOHY € argminL(ylf) + L)1 £ — u ) —d)2 | (11)
£20 2
d(n+1) _ d(n) o (f(n+1) o u(nJrl)) (12)

End

where f(") is an estimated vector value f at the nth iteration.
We can solve the sub-problems of (10) and (11) using existing
methods.

We used the GD algorithm to solve (10) as follows:

w™tD) — () _ avq)(n)(u(n)) (13)
where « is a step size and

o (w) £ Jllu— £ +d"|* + BR(u).
We plug (13) into (10) to determine the step size as follows:

o € argmin ¢ (@) (14)

where (;5(”) (@) 2 pn) (u(") — avVe™) (u(n))),

> (Ni—N;)'2p (| Now — Nyjul*) (N;—N;)u,
i,jEQi

VR (u)

and p(¢) is the first order derivative of p(t). Since solving (14)
is an intermediate step of solving (10), we do not need to find
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an exact « value to minimize (14). We chose to use one step
of Newton’s method for (14) as follows [22]:

()
~ (o)

where ¢(™ (o) and (™ (a) are the first and second order
derivatives of ¢(™ () with respect to a:

¢(0) = —[[ VO (ul™)|?

(15)

and

M (0) ~ VO (u™)Y (,N@W + VR(V<I>(”))) .

We approximate o) («) by not using the second derivative
of p(t) as suggested in [23, p. 683].

Equation (11) can be solved using De Pierro’s EM al-
gorithm [24] and OS approximation can be used to speed
up the convergence rate. Whereas Wang et al. used De
Pierro’s algorithm with the surrogate function of their NL
regularizer [4], we use De Pierro’s algorithm with a shifted
quadratic regularizer, which requires far less computation. One
can find a similar formula for this sub-problem of (11) without
a Lagrangian multiplier vector in [12].

III. RESULT

We simulated a 3D SPECT-CT system with the non-
uniform attenuation map, collimator-detector response, and
scatter component (128 x 21, 4.8>mm? pixel size). We used
the XCAT phantom [13] to generate the true SPECT image.
The dimension of the SPECT image was 128 x 128 x 21,
4.83mm?® voxel size. We set the regularization parameters as
follows: 3 = 2713, g = 215 the patch size 3 x 3 x 3,
the search neighborhood size 7 x 7 x 7, five past estimated
images for hessian approximation (L-BFGS-B), and p = 277
(ADMM). Six subsets were used for OSEM and ADMM and
12 threads were used for computation (Intel Xeon 2.67GHz). A
uniform initial image was used for all methods. We measured
a normalized root mean square error (RMSE) for estimated
images at all (outer) iterations and the definition of the RMSE

is .
| f — frruEel

RMSE =
| frrull

(16)
Fig. 1 shows the plots of RMSE values versus computa-
tion time for different methods: GD, EM and OSEM using
De Pierro’s lemma, L-BFGS-B [25], and proposed ADMM.
OSEM does not show much speed up as compared to EM due
to computationally expensive NL regularizer calculation for
all sub-iterations. ADMM separates the likelihood update and
the regularizer update by splitting and runs more sub-iterations
for the likelihood update (2 outer-iterations x6 subsets) than
for the regularizer update (1 outer-iteration). These simulation
results illustrate that repeated likelihood updates are more
important for fast convergence than regularizer updates.

Fig. 2 shows estimated images of different methods at 500
seconds and the true image. At this early time, ADMM yielded
the best contrast recovery among all other methods. Fig. 3
shows estimated images of different methods at 1000 seconds
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Fig. 1. RMSEs of estimated images using different algorithms over
time. Proposed ADMM showed faster convergence rate than other previous
methods.

500

and the true image. In this case, L-BFGS-B achieved contrast
recovery similar to ADMM. Both ADMM and L-BFGS-B
yielded better contrast recovery than other methods.

IV. DISCUSSION

We developed a new algorithm for emission tomography
with computationally expensive NL regularizers using the
ADMM. By combining with the OS approach, our proposed
ADMM approached convergence much faster than existing
methods such as GD, EM - De Pierro, OSEM - De Pierro, and
L-BFGS-B. Since it seems more important to update the likeli-
hood part frequently, our ADMM vyielded faster convergence.
Comparing our new method with other algorithms such as
preconditioned conjugate gradient can be an interesting future
work.

We demonstrated that our proposed method worked well
for SPECT image reconstruction with the patch-based Fair
potential function [4]. Our proposed method can be easily
extended to other computationally expensive NL regulariz-
ers [3], [5], [16] and NL regularizers that use high-resolution
side information [7]-[9] for both emission and transmission
tomography.

ADMM requires a good p value. Even though the theory
of ADMM says that the algorithm will converge for any p
value, the choice of p affects the convergence rate. Our future
research will be an investigation on how to choose a good
value.
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