
2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) M17-1 

Fast Variance Computation for 
Quadratically Penalized Iterative Reconstruction of 

3D Axial CT Images 
Stephen M. Schmitt, Student Member, IEEE, and Jeffrey A. Fessler, Fellow, IEEE 

Abstract-Finding the variance of iteratively-reconstructed 3D 
axial CT images is useful for statistical analysis of these images or 
could be useful for dynamic, on-line beam intensity adjustment. 
Previous methods for finding the variance are either compu­
tationally intractable or approximations that take minutes per 
voxel to compute. In this paper, we propose a method that can 
generate a variance image for an entire volume in seconds by 
making approximations specific to third-generation 3D axial CT 
geometries. We compare the computation time and error of the 
resulting approximate image to the empirical image formed from 
many simulated realizations of a reconstruction. 

I. INTRODUCTION 

Iterative reconstruction (IR) methods in computed tomography 
have received attention for their resolution and noise properties 
that improve on FBP [5]. However, the statistical properties 
of IR methods are more difficult to analyze than FBP. When 
using quadratic regularization with IR, there is a closed-form 
expression for the covariance matrix of the reconstruction 
for a fixed statistical weighting matrix W [2]. Knowledge of 
the variance could be used for further statistical analysis, or 
potentially in a clinical setting to inform a radiologist of the 
relative accuracy of a region, or to dynamically adjust the X­
ray beam intensity of a CT scan to reduce dose while providing 
a reconstructed image with more uniform variance. 

Calculating and storing the covariance is intractable, motivat­
ing methods to find the variance of each reconstructed voxel 
quickly. Prior work has given expressions for the variance 
in terms of the forward and back-projection of each voxel, 
under an approximation of local shift-invariance [4]. There 
are methods that greatly speed up these approximations by 
removing the need to forward and back-project a voxel for 
specific CT geometries, such as 2D fan-beam [7] and 3D 
step-and-shoot CT [8], but to our knowledge, there is no such 
method for 3D axial CT. 

In this paper, we use methods similar to those in [7], [8] to 
develop an approximation to the variance for 3D axial CT 
that reduces the computational cost of finding this variance by 
several orders of magnitude compared to existing methods. 
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II. METHODS 

In our approximation, we assume that we are only interested in 
the variance of each voxel, i.e., the diagonal of the covariance 
matrix; that the observed sinogram elements are statistically 
independent given a scanned object; and that the projection of 
a single voxel is, to a local approximation, shift-invariant. 

For a quadratically-penalized least squares reconstruction 
problem with a data-fit term and a regularization term 

x = arg min �IIY - Axll� + �IIRxll�, (1) 
x 2 2 

the closed-form (but generally uncomputable) solution is given 
by 

x = (H + aRTR)-1 A TWy, 

where H = A TWA is the Hessian of the data-fit term. If 
the weighting W is chosen so that cov(y) = W-1, then the 
reconstruction covariance is [2] 

cov(x) = K = (H + aRTR)-IH(H + aRTR)-I. 

Evaluating the elements of this matrix is computationally 
intractable because of the need to invert a large matrix. 

A. Fourier-based methods 

Previous work ([7], [4]) has demonstrated that an element on 
the diagonal of this matrix, representing the variance of the 
reconstruction of a single voxel j, can be approximated as 

where 'K = {O, . . .  ,Nx - l} x {O, . . .  ,Ny - I} x {O, . . .  ,Nz - I} 
is a set of discrete 3D frequencies; rj = r3{[ATWA].j} 

.I 

and Qj = r3{[RTR].j} represent 3D frequency responses of 
.I 

A TWA (the Hessian of the data-fit term, a weighted project-
and-backproject matrix) and RTR (the Hessian of the regular­
ization term) local to the voxel j. This local 3DFT centered 
at nj is defined as 

INI 
(r] (x}) [k] = I Xe exp (-t2rr(k 0 N) . (ne - nj»), (3) 

e=l 
where 0 represents element-wise division, nj represents the 
spatial position of voxel j in units of voxels, and N = 
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(Nx, Ny ,  Nz). We define a continuous-frequency analog to (3); 

INI 
(r]cont {x}) (V) = I Xe exp (-127rV . (ne - nj»), (4) 

e=1 
where v has units of cycles per sample; we then approximate 
(2) as 

K � ( 
Hi V) 

dv JJ � 

J[-HP (Hj(V) + aR(V)2 ' (5) 

where Hj � r]cont{[ATWA].j} and R � r]conl{[RTR].j}. The 
closed-form expression [8] for R in independent of voxel 
position (so long as the voxel is not along an image border), 
and so, to evaluate (5), we focus on developing a closed­
form approximation to HiV), the local frequency response of 
the Hessian of the data-fit term. In a parallel-ray geometry 
with noise that is stationary within one view angle, as in [1], 
HiV) would also be independent of voxel, and Kjj would be 
uniform. 

B. Local frequency response for axial CT 

Let af3'/S) be the continuous footprint of the jth voxel when 
the source is at an angle f3, as a function of 2D detector 
position s. With this notation, Aij = af3i.iS;), where S; and 
f3i are the detector position and source angle, respectively, of 
the ith projection element. 

Similarly, we can define wf3(S) to be a continuous extension 
of the elements of the weighting matrix W, defined such that 
wf3Js;) = Wii. We assume that the weighting changes slowly 
as a function of f3 and s, such that the continuous interpolation 
from the set of defined points is reasonably accurate. We also 
specify wf3(S) = 0 when s is not located on the detector. 

Writing the matrix multiplication defining A TWA, one partic­
ular value of [A TWAlkj is: 

N,Np 
[A TWA]kj = I wf3JS;)a/3i.k(S;)af3i./S;)· (6) 

i=1 
Approximating this sum as an integral: 

[A TWA]kj � n ( (
2
" wf3(S)af3.k(S)af3./S) df3 ds, (7) 

JlIl2 Jo 
where n = 1/ /}.s/}./1f3; /}.S and /}.l are the spacings on the 
detector between pixels in the sand t directions, and /}.f3 is 
the spacing, in radians, between source positions. We define 

�kj,f3 

so that (7) becomes 

( af3.k(S)af3.iS) dS 
JlR2 
.1.2 wf3(S)af3.k(S)af3.iS) dS 

.1.2 af3.k(S)af3.iS) dS 

(
2
" [A TWA]kj � n 

Jo �kj.f3Wkj.f3 df3. 

(8) 

(9) 

(10) 

We now find approximations for � (an unweighted correlation 
between footprints) and w (the weighted correlation normal-

ized by the unweighted correlation) that allow us to further 
simplify (5). 

We can interpret �kj,f3 as an unweighted correlation between 
the footprints of voxels k and j, or as the kth voxel in the 
3D backprojection (using only projection angle f3) of the 
projection of voxel j. 

C. Normalized weighted correlation approximation 

Usually, wf3(S) varies slowly relative to af3,iS), and so, ap­
proximately, the definition of w in (9) essentially sifts out one 
particular value of wf3. This value can be any suitable value 
of wf3(S) near the position Sj on the detector that maximizes 
af3,iCSj). We choose the point on the detector where a ray 
from the source at angle f3 passing through voxel j intercepts. 
Since this is likely not exactly the exact parameters of an 
observation, we round to the nearest detector element and 
source angle. We define wj.f3 � wf3(Sj) where, for nj � nb 
Wf3(Sj) � Wkj.f3· 
With this approximation, (10) becomes 

[A TWA]kj � n i2
" �kj.f3Wj,f3 dj3. 

Since W no longer depends on k, we can propagate r]cont 
inside the integral, giving: 

(11) 

where Sj.f3(V) � r]cont{�'j.f3} is the local 3DFT of (8) . We now 
focus on approximating (11) to simplify it. 

D. Unweighted footprint correlation approximation 

Voxel j has detector footprint af3,iS), and to an approximation 
of the detector curvature as a plane tangent to this footprint, 
a voxel k near j has footprint 

af3,k(S) � af3,is - Pf3,ink - nj», 

for a matrix Pf3,j E R2x3 that is determined by the CT geometry 
(see Appendix A). Using this approximation, we define the 
approximation lkj,f3: 

�kj,f3 � lkj,f3 ( af3,JCs - pf3./nk - nj»af3,JCS) dS JlR2 
ra,f3,iCPf3,ink - n», (12) 

where ra,f3,iS) is the 2D auto-correlation of af3,j. Defining 
3J'f3(V) � r3 l{l,J'f3}, it follows from (12) that: , J,con , 

(13) 

where Af3,iCV) is the 2DFT of the footprint af3,iCS) and pt,j is the 
unit vector whose span is the kernel of Pf3,j (see Appendix B). 

Using the approximation (13) in (11), with the sifting property 
of the Dirac impulse, the local frequency response simplifies 
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to 

� IAj3,j(Pfi,}V) 12 Wj,j3 
H/V) � IT L.J 1/2 ' j3E:Bj(V) Ipj3,jPJ,j l �j3,/V) 

(14) 

where '13/V) is the set of values of 13 that are solutions to 
Pt.j , v = 0; for a 360-degree rotation axial scan, 1'13/ v)1 = 2 
when v *' 0, The scaling factor 

arises from the sifting of the Dirac impulse in (13), 

E. Reduction to single integral 

We define (p, <1>, V3) to be v in cylindrical coordinates and 
Dso' (r, ¢, z) to be the location of voxel j in space in cylindrical 
coordinates, normalized to Dso, so that r = 0 at the isocenter 
and r = 1 at the detector. Appendix A shows that (14) 
simplifies to 

IT���zD�d � wj3,j sinc(v])2 sinc(v2)2 sinc(v3)2 
H/V) � 2 L.J ' D,o j3EB pdj3,j ...)1 - r2 cos2(¢ - <1» 

(15) 
where dj3,j is the distance from the source at angle 13 to the 
projection of voxel j into the xy-plane, divided by Dso; this is 
approximately equal to 1 near the center regardless of 13. For 
ease of notation, define: 

C IT���zD�d/ D;o 
D(P, <1>, V3) sinc(p cos <1»2 sinc(p sin <1»2 sinc(v3)2 

� wj3,j 
, E/<1» L.J j3EB(<I» dj3,j ...)1 - r2 cos2(¢ - <1» 

so that H/V) � C D(V) · E/<1»/p, and E/<1» is the only one of 
these terms that depends on the voxel location and the weights, 
and hence the object being scanned. 

We define the following expression, which we tabulate, 

Ipmax(<I» i� y. D(P <1> V3)' p2 
F(<1>, y) � , , 

dV3 dp, o _1 (y. D(P, <1>, V3) + pR(V) 2 
2 

(16) 
which allows us to rewrite (5) as 

Kjj � a-I 12" 
F(<1>,a-ICE/<1») d<1>. (17) 

This expression isolates all voxel location and object depen­
dence into evaluation of E/<1», so we can precompute F for 
a range of <1> and k by numerical integration. Approximating 
the variance via (17), then, becomes a simple ID numerical 
integration. This integration can be evaluated using a coarse 
discretization of <1> with reasonably accurate predicted vari­
ance, especially given that the integrand is periodic and inte­
grated over one period, a case in which numerical integration 
converges quickly [6]. 

III. RESULTS 

We evaluated the variance estimate by comparing it to the em­
pirical variance computed by simulating 100 reconstructions 
of a 512 x 512 x 48 voxel XCAT phantom (pictured in Fig. 1) 
with voxel size �x x �z = 0.9764 x 0.625mm. The simulated 
scanner was a GE third-generation system geometry with a 
888 x 32 quarter-offset pixel detector with pixel size �s x �l = 

1.0239 x 1.0964nun, 984 view angles, Dsd = 949.075mm 
source-to-detector distance, and Dso = 408.075mm source-to­
isocenter distance. Each reconstruction used 40 iterations of 
an ordered-subset method with 41 subsets. 

The resulting empirical variance maps were noisy, so for the 
purposes of comparison and under the assumption that the 
variance image changes slowly (which is confirmed in [7]), we 
blurred the empirical variance image with a Gaussian kernel 
with a FWHM of 3 voxels. Fig. 2 shows the resulting standard 
deviation image. Fig. 3 shows the results of our method. Fig. 4 
shows the percentage error of the fast method relative to the 
empirical method .. 

XCAT phantom 

Fig. 1. XC AT phantom (center is axial slice through the center of the volume; 
bottom is coronal slice; right side is sagittal slice) 

Fig. 5 shows horizontal profiles of the estimates through the 
center of the center slice with the empirical method in black 
and our method in red. Fig. 6 shows percentage errors of this 
profile. 

The empirical reconstructions used to make Figure 2 took a 
mean of 14846 CPU-seconds (realizations ranged from 11995 
CPU-sec. to 17934 CPU-sec. with a standard deviation of 1658 
sec.) The FFT method takes 470 CPU-seconds per voxel. Our 
method takes less than 10-5 CPU-seconds per voxel when 
evaluating (17) by numerically integrating using 24 sample 
points, Estimating the variance for the entire XCAT volume 
by evaluating (17) once for each 4 x 4 x 1 voxel block and 
interpolating only requires 4 CPU-seconds. Tabulating F in 
(16) takes approximately 15 minutes using an unaccelerated 
method, Since this is image-independent and fixed only to a 
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Empirical SO (HU) 

Fig. 2. Empirical standard deviation estimate 

Predicted SO (HU) 

Fig. 3. Fast standard deviation estimate 

Relative Error (%) 

Fig. 4. Standard deviation error percentage 
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given regularization scheme and CT geometry, we consider 
this cost to be amortized. 
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Fig. 5. Profile comparison of empirical and estimate 
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16 

Fig. 6. Profile of error percentage 

IV. DISCUSSION 

The computational time of our method is much lower than 
empirical methods, using less than lO-5 times the time of lOO 
reconstructions. FFT methods are slower for an entire volume 
than empirical methods, but they have the advantage of being 
able to find the variance of a specific voxel of interest. Our 
method is able to find the variance of one specific voxel in 
less than lO-7 times the time of FFT methods. Our method is 
less exact, but the error relative to empirical standard deviation 
is within 20% within the support of the object; whether this 
error-time tradeoff is worthwhile depends on the application. 

Our method is currently unable to accurately find variance 
outside the support of the object; non-negativity constraints in 
the reconstruction algorithm significantly reduce the variance 
in air regions outside the object, and our method does not take 
this into account. As a result, the relative error grows toward 
infinity as the empirical variance approaches zero. However, 
accurate variance prediction outside the object is probably 
not important for many applications. Alternatively, external air 
regions could be identified from a rough pilot reconstruction 
and accounted for separately. 

V. CONCLUSIONS 

We have presented a method for approximating the variance 
image of iteratively-reconstructed 3D axial CT images that 
saves significant computational time to existing methods while 
keeping the approximation error within reasonable bounds 
within the support of the image. Additionally, our method can 
be used to find the variance of any subset of voxels within the 
image, as opposed to only the entire image simultaneously for 
empirical methods. Future work will include extending our 
method to other CT geometries, particularly helical CT, and 
non-quadratic regularization. 
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ApPENDIX A 
CONE-BEAM CT GEOMETRY 

For axial cone-beam CT, the position of the X-ray source, as 
a function of angle 13, is given by: 

p,(j3) = Dso(cosj3, sinj3, 0). 

Let P2 = diag(1, 1, 0) be a projection matrix into the xy-plane. 
The vector P2(Xj - Ps(f3» is then in the direction of a ray from 
the source at angle 13 passing through the projection of voxel 
j onto the xy-plane. A unit vector in this direction is given by 

eu./j3) = P2(Xj - Ps(f3»/(Dsodf3.j), 

where df3.j = IIP2(xj - Ps(f3»Ii2/ Dso is the distance from the 
source to the xy-projection of voxel j, normalized by Dso, 
This vector is perpendicular to the direction of increasing s, 
coordinate on the detector in the xy-plane, and so the vector 

where R is a matrix that rotates counterclockwise 90 degrees 
in the xy-plane, is a unit vector in the direction of increasing 
s, coordinate. A shift of l1it in voxel space in the xy-plane 
corresponds to a shift of I1xl1it in space, which is magnified 
by a factor of mf3.j = Dsd/ Dsodf3.j. Therefore this shift causes 
a shift in the s, direction on the detector of I1xmf3./e,.j . 11it). 

A unit vector in the direction of increasing S2 coordinate 
is e2 = [0, 0, l]T, regardless of voxel and ray direction. 
Analogously to the s, shift, a shift of l1it in voxel space 
corresponds to a shift of I1zmf3./e2 . 11it) in the S2 direction 
on the detector. 

These vectors are the rows of the 2 x 3 matrix Pf3.j in Section 
II-D: 

-x2+D,o sinf3 x,-D,o cosf3 

� � Q .!!.. D,odp.j D,odp.j 
0 0 

1: .!!.. I1xmf3.j 
I1z�f3.j 

] 
0 

Pf3.j 1:Q 
p+T f3.j 1:-'Q 

I 1'/2 
for which Pf3.jPJ.j = I1:QQT1:I'/2 = 11:1 = I1xl1zm%.F Since 
eu.j(f3) is a unit vector perpendicular to both e,.j and e2, it is 
in the kernel of Pf3.j, and so we can let it be pt.j in Section 
II-D. 

The argument to the impulse in (13) is equal to: 

a(j3) � (P2(Xj - Ps(f3» . V)/ Dsodf3.j. 

With v in cylindrical coordinates (p, $, Y3) and Xj in cylindrical 
coordinates (rDso, ¢, 'iDso), 

a(f3) = dfi.jp( r cos( ¢ - $) - cos(f3 - $». (18) 

The values of 13 for which the argument to the impulse is zero, 
then, are 

13 = f!3+,j3- ) = ($ ± arccos(r cos(¢ - $»}. 

At these values of 13, 

P+ T... [ (l1xmf3)-' p ] 
f3.jY = 

(l1zmf3.j)-'Y3 
. 

Using the separable footprint model for CT projection with a 
transaxial trapezoid and an axial rectangle [3], the 2DFT of 
voxel j's footprint is 

11;l1zmlj sinc(l1xmf3.jU, cos ef3) . 

sinc(l1xmf3.jU, sin ef3.j) sinc(l1zmf3.ju2), 

where ef3.j is the angle at which the ray passes through the 
voxel. When 13 E 13, we have ensured that the angle of a ray 
passing through a voxel j is $ ± n /2, since ell.j(f3) . v = O. 
A voxel's footprint is unchanged if e is rotated by an integer 
multiple of n/2, and so we can evaluate the footprint at e = $ 
for 13 E 13. In this case, 

Taking the derivative of (18) and evaluating at 13 E 13 gives 

(f3.q = dfi.jp �1 - r2 cos2(¢ - $). 

ApPENDIX B 
3DFT OF A 2D FUNCTION 

This section derives (13). If g(XM) and G(VM) are M­
dimensional Fourier transform pairs and h(XN) and H(vN) 
are N-dimensional Fourier transform pairs, then a separability 
property is that 

are also (M + N)-dimensional Fourier transform pairs, where 
TM truncates a (M+N)-vector to its first M elements, and TN 
truncates it to its last N elements. 

Let A E RMx(M+N), B E RNx(M+N) be two matrices that map 
(M + N)-vectors into fewer dimensions. Then 

where C E R(M+N)X(M+N) is the vertical concatenation of A 
above B. This follows naturally from defining C and using it 
in the Fourier identity gh(C1) � ICI-'GH(C-TV). 

A. With a constant as h 

If h : RN 
� R is a unit function, hO = 1; we can simplify 

this further since we can choose B to be any N x (M + N) 
matrix. We choose B = Al., which is N orthonormal (M + N)­
dimensional row vectors that are each orthogonal to each row 
in A, that is: AA I = OMxN, and Al.A I = IN. The inverse of 
C is then given by: 

c-' = [ A+ AI ] , 

from which TMC-T = A+T and TNC-T = Al.' 
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From noting that, for this orthogonal A1-, 

CCT = 
r AA T AA I

T 
1 = 

r AA T 0 1 
l A1-A T A1-A 1- J l O IN J ; 

the determinant ICI-1 = ICCTI-1/2 = IAATI-1/2. Therefore, the 
(M + N)-dimensional Fourier transform of g(AX) is 

rM+N {g(AX)} = IAATI-I/2G(A+TV)ON(A1-V), 

where ON denotes the N-dimensional Dirac impulse. 

B. Application 

In (12), we have M = 2, N = 1, g = ra, the autocorrelation of 
a footprint, A = PM' and A1- = tJt.j' a unit vector orthogonal 
to both rows of A. 
Directly applying the results of the previous section, while not­
ing that the magnitude of Ra, the 2DFT of the autocorrelation 
ra, is simply IAI2, results in (13). 
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