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ABSTRACT

Image acquisition systems invariably introduce blur, which necessitates the use of deblurring algo-
rithms for image restoration. Restoration techniques involving regularization require appropriate
selection of the regularization parameter that controls the quality of the restored result. We focus
on the problem of automatic adjustment of this parameter for nonlinear image restoration using
analysis-type regularizers such as total variation (TV). For this purpose, we use two variants of
Stein’s unbiased risk estimate (SURE), Predicted-SURE and Projected-SURE, that are applica-
ble for parameter selection in inverse problems involving Gaussian noise. These estimates require
the Jacobian matrix of the restoration algorithm evaluated with respect to the data. We derive
analytical expressions to recursively update the desired Jacobian matrix for a fast variant of the
iterative reweighted least-squares restoration algorithm that can accommodate a variety of regu-
larization criteria. Our method can also be used to compute a nonlinear version of the generalized
cross-validation (NGCV) measure for parameter tuning. We demonstrate using simulations that
Predicted-SURE, Projected-SURE, and NGCV-based adjustment of the regularization parameter
yields near-MSE-optimal results for image restoration using TV, an analysis-type �1-regularization,
and a smooth convex edge-preserving regularizer.

Keywords: Image restoration, regularization parameter, generalized cross-validation, Stein’s un-
biased risk estimate, Jacobian matrix.

1. INTRODUCTION

Restoration is an important image-processing step in many applications where the goal is to recover
an underlying image of interest x from blurred and noisy measurements y. One way to solve this
problem is to minimize a cost function Ψ composed of a data-fidelity term (that measures the
consistency of the restored result to the measurements) and a regularization term (that reduces
the effect of noise by “smoothing” the solution). Nonquadratic regularization criteria such as edge-
preserving ones, e.g., total variation (TV) or those that are based on sparsity (e.g., �1-regularization)
can provide better quality1 compared to quadratic Tikhonov-like regularizers. However proper
application of regularization demands careful selection of the so-called regularization parameter, β,
that balances the trade-off between noise amplification and image-smoothing. This task is nontrivial
and is often performed manually based on visual inspection, so a means of automation is desirable.

Generalized cross-validation (GCV) is a popular quantitative method2 for automatic selection
of β, especially for linear restoration algorithms. The primary advantage of GCV is that it does
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not require knowledge of the noise variance σ2. Additionally, GCV is known to yield β that asymp-
totically minimizes the true mean squared-error (MSE, also known as risk) for linear algorithms.
Extensions of GCV to nonlinear algorithms (NGCV) are available,3,4 but they are more involved
analytically4 and more expensive to compute compared to the linear version. An alternative to
GCV is to use methods that directly attempt to minimize the MSE (or its weighted variants) via
the principles of risk estimation.5–11 Such techniques are appealing since MSE-type measures are
commonly used to quantify reconstruction quality.

When noise is modeled as Gaussian, Stein’s principle5 can be used to derive an estimate (Stein’s
unbiased risk estimate—SURE) of MSE for denoising applications. Unlike GCV, SURE requires
the knowledge of σ2, but is optimal even in the nonasymptotic regime and has been used for opti-
mally adjusting parameters of a variety of denoising algorithms.9–11 For ill-posed inverse problems
however, it may not be possible to directly estimate MSE since y may only contain partial in-
formation6 about x. In such cases, weighted variants such as Predicted-MSE and Projected-MSE
(that evaluate the error only on those components of x that are accessible6,12 through y) may be
used. Applying Stein’s principle to Predicted-MSE and Projected-MSE yields Predicted-SURE,12

and Projected-SURE,8 respectively, which also require σ2.

In this paper, we propose to employ and assess NGCV, Predicted-SURE and Projected-SURE
for selecting the regularization parameter β for nonlinear image restoration. Computation of these
quantities requires6–8 the Jacobian matrix of the restoration algorithm evaluated with respect to y.
We evaluate the desired Jacobian matrix for a fast variant of the iterative reweighted least-squares
(IRLS) restoration algorithm13,14 that can accommodate a variety of regularization criteria. Our
work can be interpreted as an extension to those of Vonesch et al.7 and Giryes et al.8 that apply to
nonlinear restoration specifically using iterative shrinkage-thresholding (IST)-type algorithms with
synthesis priors. In synthesis formulations, the cost Ψ is minimized as a function of the coefficients
of a suitable basis (e.g., wavelets) and the solution is obtained as a linear combination of the resulting
optimized coefficients. Such formulations preclude popular edge-preserving regularizers like TV that
belong to the category of analysis priors where Ψ is directly specified in terms of the desired solution.
Moreover, Selesnick et al.15 recently illustrated that analysis priors can provide better restoration
quality compared to synthesis ones. Our method can be readily applied to a variety of analysis-type
regularizers including TV and can also be easily extended to handle synthesis formulations. We
demonstrate using various simulations that β selected to minimize NGCV, Predicted-SURE and
Projected-SURE yield near-MSE-optimal results for image restoration using TV, an analysis-type
�1-regularization and a smooth edge-preserving regularizer with the Fair potential.16

The paper is structured as follows. We describe image restoration and parameter selection
problems mathematically in Section 2. We present details related to GCV, NGCV and the use
of Stein’s principle for estimating Predicted-MSE and Projected-MSE in Section 3. We describe
our restoration algorithm and provide an analytical development of the evaluation of the desired
Jacobian matrix in Section 4. We present numerical results in Section 5 and conclude the paper
with Section 6.

2. PROBLEM FORMULATION

We adopt the following linear model for the restoration problem,

y = Ax+ b, (1)
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where y ∈ R
N denotes blurred and noisy data, x ∈ R

N is the unknown noise-free image, b ∈ R
N is

an i.i.d. zero-mean Gaussian random vector with variance σ2, i.e., b ∼ N (0, σ2IN ), and IN is the
identity matrix of size N . We assume that A ∈ R

N×N , which represents the blur of the imaging
system, is circulant. Throughout the paper, (·)� denotes the transpose of a vector or a matrix and
the m-th element of any vector y is denoted by ym and the mn-th element of any matrix A is
written as [A]mn.

Recovering x from y is an ill-posed problem, especially when A has a nontrivial null space
N{A} �= ∅. Since regularization is an effective means of tackling the ill-posedness of (1), we
formulate image restoration as a regularized reconstruction problem where we minimize a cost
function Ψ composed of a quadratic data-fidelity term (that measures how closely the restored
result agrees with the model in (1)) and a regularization term R (that enforces “smoothness” or
regularity in the reconstruction thereby reducing the effect of noise):

x̂ = fβ(y)
�
= argmin

u

{
Ψ(u)

�
= ‖y −Au‖22 + βR(u)

}
. (2)

Convex nonquadratic regularizers that preserve edges, e.g., total variation (TV), or those that
promote sparsity, e.g., based on the �1-norm, are popular in image reconstruction problems as they
can provide good quality reconstructions.8,13 Therefore, we consider

Rφ(u) =
PM−1∑
l=0

φ(|[Ru]l|),

where φ(·) is a convex nonquadratic potential function, R = [R1
� · · ·RP

�]�, and {Ri}Pi=1 areM×N
(typically, M ≥ N) regularization operators (e.g., finite differences along different directions). The
general form Rφ includes analysis �1-regularization for φ(x) = x:

R�1(u) =

PM−1∑
l=0

|[Ru]l|, (3)

and many convex smooth edge-preserving regularizers: as an instance, we consider

RFP(u) =

PM−1∑
l=0

φFP(|[Ru]l|), (4)

where φFP(x)
�
= δ2[x/δ − log(1 + x/δ)] is the Fair potential (FP)16 with δ > 0. The methods

proposed in this work also apply to the strongly edge-preserving TV regularization:

RTV(u) =

M−1∑
l=0

√√√√
P∑

p=1

|[Rpu]l|2. (5)

For notational ease, we introduced the nonlinear operator fβ : RN → R
N , representative of the

minimization process in (2), that acts on the data y to yield the restored result x̂. The regularization
parameter β in (2) (and fβ) balances the effect of the data-fidelity and regularization terms on x̂:
small β-values lead to noisy reconstructions while large values result in over-smoothing and loss of
details.8,10 A proper choice of β is therefore crucial for obtaining good quality restoration.
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3. SELECTION OF REGULARIZATION PARAMETER β

3.1 Generalized Cross Validation (GCV)

GCV2 is an attractive method for selecting β, especially in the context of linear algorithms. For
a generic linear reconstruction of the form, fβ(y) = Fβy (Fβ is matrix representing some type of
inverse filtering), GCV selects β by minimizing

GCV(β) =
N−1||Afβ(y)− y||2
(1−N−1tr{AFβ})2 . (6)

Calculation of the trace, tr{AFβ} in the denominator of (6), can be performed either analytically
in some special cases, e.g., when Fβ is circulant, or stochastically using Monte-Carlo methods17 for
a general Fβ . GCV(β) is simple to implement and is know to yield β that asymptotically provides
an optimal reconstruction for linear algorithms.2

For nonlinear algorithms (denoted by fβ), Deshpande et al.3 proposed the following NGCV
measure3,4 (GCV for nonlinear algorithms) based on the principles of cross-validation:

NGCV(β) =
N−1‖y −Afβ(y)‖22

(1−N−1tr{AJfβ(y)})2
, (7)

where Jfβ(y) is the Jacobian matrix consisting of partial derivatives of the components {fβ,n(y)}Nn=1

of fβ(y) with respect to the components {yn}Nn=1 of y: the kl-th element of Jfβ(y) is given by

[Jfβ(y)]kl =
∂fβ,k(z)

∂zl

∣∣∣∣
z=y

. (8)

NGCV(β) is a generalization of GCV(β) for nonlinear algorithms.3,4 It is more involved and
computation intensive compared to GCV(β) (6) as it requires the evaluation of Jfβ(y).

3.2 Stein’s Principle for Estimating MSE-type Measures

In image reconstruction problems, mean squared error (MSE),

MSE(β)
�
= N−1‖x− fβ(y)‖22, (9)

is commonly used to determine quality of a reconstructed image and is an attractive alternative to
(N)GCV for tuning β. However, MSE(β) cannot be directly used in practice due to its dependence
on the unknown x. For denoising applications, i.e., A = IN in (1), one can use Stein’s principle∗

to estimate MSE(β) when noise is modeled as Gaussian. This process leads to the so-called Stein’s
Unbiased Risk Estimate (SURE)5,9 given by SURE(β) = N−1‖y−fβ(y)‖22−σ2+2σ2N−1tr{Jfβ(y)}.
SURE(β) is unbiased, i.e., Eb{MSE(β)} = Eb{SURE(β)} (where Eb{·} denotes the expectation
operation with respect to b), but requires the knowledge of the noise variance σ2 unlike (N)GCV.
Evaluation of Jfβ(y) in SURE(β) can be performed analytically for some special nonlinear denoising
algorithms (e.g., wavelets-based denoising9 and nonlocal means11) or numerically using the Monte-
Carlo method10 for an arbitrary linear/nonlinear, iterative/noniterative algorithm fβ .

∗Application of Stein’s principle requires the hypotheses that fβ is (weakly) differentiable6,9 and decays
sufficiently rapidly6,9 such that limbn→∞ p(b)fβ,n(y) = 0 ∀ n, for the Gaussian probability density function
p(b) = (2πσ2)−N/2 exp(−‖b‖22/2σ2).
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However, for inverse problems (1) involving A with a nontrivial null-space N(A), it is not
possible to estimate MSE since information concerning x that lies in N(A) cannot be recovered
from y. In such cases, Projected-MSE may be used as an alternative6,8 to MSE. Projected-MSE
computes squared-error based on those components of x that lie in the orthogonal complement6,8

of N(A) (equivalent to R(A�), the range space of A�) that are in turn accessible from y and thus
allows for its estimation:6,8

Projected-MSE(β) = N−1‖P(x− fβ(y))‖22, (10)

where P = A�(AA�)†A is the matrix corresponding to a projection onto R(A�) and (·)† denotes
pseudo-inverse. Another squared-error measure that is amenable to estimation is Predicted-MSE
(PMSE)12 that computes the error in the measurement domain:

Predicted-MSE(β) = N−1‖A(x− fβ(y))‖22. (11)

Both Projected-MSE and Predicted-MSE are special cases of the following weighted error measure
(WMSE) that we consider for generality of exposition:

WMSE(β) = N−1‖A(x− fβ(y))‖2W, (12)

where W is a positive definite (W 	 0),§ symmetric (W� = W) weighting matrix. It is easy to
see that W = (AA�)† for Projected-MSE in (10) and W = IN for Predicted-MSE in (11). Similar
to SURE(β), one can arrive at an estimate for WMSE(β) using Stein’s principle6 as stated in the
following theorem.

Theorem 3.1. Let fβ in (2) be (weakly) differentiable and satisfy Eb{|[WAfβ(y)]n|} < ∞ ∀ n.
Then, the random variable

WSURE(β) = N−1‖y −Afβ(y)‖2W − σ2N−1tr{W}+ 2σ2N−1tr{WAJfβ(y)} (13)

is an unbiased estimator of WMSE(β) (12), i.e., Eb{WMSE(β)} = Eb{WSURE(β)}. �
A proof of this result can be obtained by a straightforward extension of previous results, e.g.,
of that of Eldar.6 As with SURE(β), the key step in computing WSURE(β) is the calculation
of tr{WAJfβ(y)} that in turn requires Jfβ(y). We propose to evaluate Jfβ(y) analytically for an
iterative reweighted least squares (IRLS)-type algorithm13,14 that can be applied to (2) for several
regularizers including TV (5), �1-regularization (3) and smooth edge-preserving criteria such as (4).

4. EVALUATING THE JACOBIAN MATRIX Jfβ(y)

4.1 Standard IRLS Algorithm

The iterative reweighted least squares (IRLS) algorithm performs the minimization in (2) by repet-
itively solving iteration-dependent linear systems13 of the form

H(i)u(i+1) = A�y. (14)

§A matrix W ∈ R
N×N is said to be positive definite, i.e., W � 0, if z�Wz > 0 ∀ z ∈ R

N .
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At iteration i, H(i) = A�A+R�Ω−1
(i)R and Ω(i) = diag{ω(i)} is a diagonal weighting matrix, where

the n-th component of ω(i) is given by ω(i)n = t
βφ′(t)

∣∣∣
t=|[Ru(i)]n|

, n = 0 . . . PM − 1, and φ′ is the

derivative of φ. For the �1-regularization in (3), we have that

ω(i)n = β−1 |[Ru(i)]n|, (15)

while for the Fair potential (4),

ω(i)n = (β δ)−1(δ + |[Ru(i)]n|). (16)

In case of TV, ω(i) = 1P ⊗ ω̆(i), where ⊗ denotes Kronecker product, 1P is a P × 1 vector of 1s
and the m-th element of ω̆(i) ∈ R

M is given by

ω̆(i)m = β−1

(
P∑

p=1

|[Rpu(i)]m|2
)1/2

. (17)

Standard iterative solvers, e.g., preconditioned conjugate gradient (PCG), for (14) may converge
slowly for nonsmooth regularizers such as �1-regularization (3) and TV (5) since Ru(i) tends to

become sparse with increasing i and correspondingly Ω−1
(i) becomes poorly conditioned for (15) and

(17). To enhance numerical stability of IRLS (14), a small positive constant is often added to (15)
and (17)—this is usually referred to as corner rounding13 and is often administered to IRLS (14)
when nonsmooth regularizers (such as �1-regularization and TV) are used.

4.2 The IRLS-MIL Algorithm

One can circumvent the use of corner rounding for IRLS by using a matrix splitting scheme.13,18

To see this, we rewrite (14) as

B(i)u(i+1,j+1) = A�y + (C(i) −A�A)u(i+1,j), (18)

where B(i) = C(i) +R�Ω−1
(i)R and C(i) is an invertible matrix such that C(i) −A�A 	 0. Solving

for u(i+1,j+1) in (18), we obtain the following iterative scheme

u(i+1,j+1) = B−1
(i) (A

�y + (C(i) −ATA)u(i+1,j)), (19)

that is guaranteed18 to converge on the j-iteration to a solution of (14). By applying matrix inversion
lemma (MIL)19 to B−1

(i) , we get B−1
(i) = C−1

(i) −C−1
(i)R

�G−1
i RC−1

(i) , where G(i) = Ω(i) +RC−1
(i)R

�.
Thus, (19) with MIL leads to

u(i+1,j+1) = z(i+1,j) −C−1
(i)R

�v(i+1,j), (20)

solve {G(i)v(i+1,j) = Rz(i+1,j)} for v(i+1,j), (21)

where z(i+1,j)
�
= C−1

(i)A
�y + (IN − C−1

(i)A
�A)u(i+1,j). We use the following iterative solver18 for

(21) in the inner loop of the algorithm:

v(i+1,j,k+1) = Γ−1
(i) (Rz(i+1,j) +Qv(i+1,j,k)), (22)
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where Γ(i)
�
= Ω(i) + λIPM is a diagonal matrix, Q

�
= λ IPM − RC−1

(i)R
�, and λ is the maximum

eigenvalue of RC−1
(i)R

�. The update-rule (22) guarantees convergence15,18 of v(i+1,j,k) to a solution

of (21) and is implemented in favor of a CG-based solver since (22) is linear in both z(·) and v(·) and
also decouples the shift-variant component Ω(i) from the rest of the terms in G(i): these features
allow us to more easily evaluate the desired Jacobian matrix in (7) and (13) at each iteration as
elucidated in the sequel. An important observation is that IRLS-MIL (20)-(22) depends on Γ(i)

(that in turn relies on Ω(i) rather than Ω−1
(i) ) that is well-defined and thus does not require corner

rounding for handling (15) and (17).

4.3 Implementation of IRLS-MIL

The IRLS-MIL algorithm (20)-(21) generally exhibits faster convergence13 over standard IRLS (14).
The convergence speed of IRLS-MIL (20)-(22) depends primarily on the “proximity” ofC(i) toA

�A
while ensuring C(i) −A�A 	 0. For image restoration with circulant A in (1), A�A ∈ R

N×N is

also circulant. So we used C(i) = Cν
�
= A�A + νIN ∀ i and implemented C−1

ν using FFTs. The
parameter ν > 0 was chosen to achieve a prescribed condition number of Cν , κ(Cν), that can be
easily computed as a function of ν. In general, setting κ(Cν) to a large value can lead to numerical
instabilities in C−1

ν and IRLS-MIL, while a small κ(Cν) reduces convergence speed of IRLS-MIL.13

In our experiments, we found that ν leading to κ(Cν) ∈ [20, 100] yielded good acceleration over
standard IRLS for a fixed number of outer (i.e., index by i) iterations, so we set ν such that
κ(Cν) = 100.

4.4 Jacobian Matrix Derivation for IRLS-MIL

We propose to evaluate Jfβ(y), or equivalently, Ju(·)(y) (since u(·) is the reconstructed output at
any stage of the IRLS-MIL algorithm in (20)-(22)) analytically as follows. Using linearity of (8),
we have from (20) that

Ju(i+1,j+1)
(y) = Jz(i+1,j)

(y)−C−1
(i)R

�Jv(i+1,j,K)
(y), (23)

where Jz(i+1,j)
(y) = C−1

(i)A
� + (IN − C−1

(i)A
�A)Ju(i+1,j)

(y). The term Jv(i+1,j,K)
(y) in (23) corre-

sponds to v(i+1,j,K) that we obtain after performing K iterations of (22) and that we substitute in
place of v(i+1,j) in (20). We use product rule for Jacobian matrices20 to obtain Jv(i+1,j,K)

(y) from
(22) as follows:

Jv(i+1,j,k+1)
(y) = Γ−1

(i) (RJz(i+1,j)
(y) +QJv(i+1,j,k)

(y))− Γ−2
(i)Dv(i+1,j,k)

Jω(i)
(y), (24)

where Dv(i+1,j,k)

�
= diag{Rz(i+1,j) + Qv(i+1,j,k)}. Since ω(i) is a function of Ru(i), we use chain

rule20 on Jω(i)
(y) to get that

Jω(i)
(y) = Jω(i)

(u(i)) Ju(i)
(y). (25)

We analytically evaluate Jω(i)
(u(i)) for ω(i) in (15)-(17), respectively, and obtain

(�1-regularization) Jω(i)
(u(i)) = β−1diag{τ(i)}R, (26)

(Fair potential) Jω(i)
(u(i)) = (β δ)−1diag{τ(i)}R, (27)

(TV) Jω(i)
(u(i)) = 1P ⊗

(
β−2

P∑
p=1

diag{�(i)p}Rp

)
, (28)
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1. Initialization: u(0,0)
�
= A�y, Ju(0,0)

(y)n
�
= A�n, i = 0

2. Repeat Steps 3-17 until Stop Criterion is met
3. If i = 0
4. u(i+1,0) = u(i,0), v(i+1,0,0) = Ru(i,0), Ju(i+1,0)

(y)n
�
= Ju(i,0)

(y)n, Jv(i+1,0,0)
(y)n

�
= RJu(i,0)

(y)n
5. Else
6. u(i+1,0) = u(i,J), v(i+1,0,0) = v(i,J−1,K), Ju(i+1,0)

(y)n
�
= Ju(i,J)

(y)n, Jv(i+1,0,0)
(y)n

�
= Jv(i,J−1,K)

(y)n
7. Compute Γ(i); set j = 0
8. Run J iterations of Steps 9-14
9. Compute z(i+1,j) and Jz(i+1,j)

(y)n

10. If j > 0 set v(i+1,j,0) = v(i+1,j−1,K) and Jv(i+1,j,0)
(y)n

�
= Jv(i+1,j−1,K)

(y)n
12. Run K iterations of (22) and (24) to get v(i+1,j,K) and Jv(i+1,j,K)

(y)n
13. Compute u(i+1,j+1) (20) and Ju(i+1,j+1)

(y)n (23)
14. Set j = j+1 and return to Step 9
16. Compute NGCV(β) and / or WSURE(β) at iteration i using (29)-(30), (7) and (13), respectively
17. Set i = i+ 1 and return to Step 3

Figure 1: Iterative computation of WSURE(β) and NGCV(β) for image restoration using IRLS-MIL
algorithm (with J iterations of (20)-(21) and K iterations of (22)). We use a pregenerated binary random
vector n = n±1 for Monte-Carlo computation (29)-(30) of the required traces in (7) and (13), respectively.
Vectors of the form J·(·)n are stored and manipulated in place of actual matrices J·(·).

where the n-th component of τ(i) ∈ R
PM is τ(i)n = sign([Ru(i)]n), and the m-th component of

�(i)p ∈ R
M , p = 1 . . . P , is 
(i)pm = [Rpu

(i)]m ω̆−1
(i)m. In (25)-(28), u(i) is to be interpreted as

u(i) = u(i+1,0), the initialization for the j-iterations (19) at (i+ 1)-th outer iteration.

To summarize our method, we run (20), (22) for restoration, and additionally execute the
updates in (23)-(24) using (25)-(28) to iteratively evaluate Ju(·)(y) at any stage of IRLS-MIL.

4.5 Monte-Carlo Trace Estimation

The Jacobian matrices J·(·) have enormous sizes for typical restoration settings and cannot be stored
and manipulated directly to compute the desired traces, tr{AJfβ(y)} in (7) and tr{WAJfβ(y)} in
(13), respectively. So we use a Monte-Carlo method17 to estimate tr{AJfβ(y)} and tr{WAJfβ(y)}
that is based on the following straightforward identity: for any deterministic matrix T ∈ R

N×N ,

En{n� Tn} = tr{T},
where n ∈ R

M is an i.i.d. zero-mean random vector with unit variance. To use this type of stochastic
estimation for tr{AJfβ(y)} and tr{WAJfβ(y)}, we adopt the procedure proposed by Vonesch et al.7

where we take products with n in (23)-(25) and store and update vectors of the form Ju(·)(·)n and
Jv(·)(·)n in IRLS-MIL. At any point during the course of IRLS-MIL, the desired traces in (7) and
(13) are stochastically approximated as

tr{AJfβ(y)} ≈ t̂AJu

�
= n�AJu(·)(y)n, (29)

tr{WAJfβ(y)} ≈ t̂WAJu

�
= n�WAJu(·)(y)n, (30)

respectively. To improve accuracy of (29)-(30), n can be designed to decrease the variance of t̂AJu

and t̂WAJu : it has been shown17 that the variance of a Monte-Carlo trace estimate (such as t̂AJu

or t̂WAJu) is lower for a binary random vector n±1 whose elements are either +1 or −1 with
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Table 1: Setup for image restoration (IR) experiments

Experiment Test image (256× 256) Blur Regularization
IR-A Cameraman Uniform 9× 9 RTV(5)
IR-B Peppers (1 + x1 + x2)

−1, −7 ≤ x1, x2 ≤ 7 R�1 (3)
IR-C House Gaussian with standard deviation 2 RFP (4)

Table 2: ISNR (in dB) of Restored Images for Experiments IR-A, IR-B, and IR-C and varying BSNR

Experiment BSNR σ2 MSE Projected- Predicted- NGCV GCV
(oracle) SURE SURE

20 3.08× 101 3.85 3.73 3.84 3.84 2.45
IR-A 30 3.08 5.85 5.84 5.85 5.85 2.40

40 3.08× 10−1 8.50 8.50 8.49 8.49 2.41
50 3.08× 10−2 11.02 10.97 11.00 11.01 2.38
20 1.99× 101 4.44 4.28 4.34 4.34 -0.26

IR-B 30 1.99 8.44 8.43 8.44 8.44 -0.51
40 1.99× 10−1 12.41 12.41 12.41 12.28 -0.55
50 1.99× 10−2 15.54 15.53 15.44 15.53 -0.55
20 1.76× 101 3.98 3.57 3.62 3.61 -0.59

IR-C 30 1.76 4.71 4.70 4.55 4.58 -1.01
40 1.76× 10−1 6.19 6.14 6.12 6.12 -1.06
50 1.76× 10−2 6.79 6.64 6.63 6.63 -1.07

probability 0.5 than for a Gaussian random vector n ∼ N (0, IM ). So in our experiments, we used
one realization of n±1 in (29)-(30). Fig. 1 presents an outline for implementing IRLS-MIL with
recursions for J·(·)n±1 to compute and monitor NGCV(β) and WSURE(β) as IRLS-MIL evolves.

5. EXPERIMENTAL RESULTS

We performed simulations with standard test images and blur kernels8 outlined in Table 1. In
all experiments, data y was simulated by synthetically adding Gaussian noise whose variance was

chosen to meet a prescribed blurred signal to noise ratio, BSNR
�
= 10 log10(Var(Ax)/σ2). We ran

100 iterations of IRLS-MIL (with J = 1 and K = 1 inner-iterations, respectively, see Figure 1)
with the following regularizers: �1-wavelets (3) with two levels of undecimated Haar excluding the
approximation level for R, a smooth convex regularizer (4) with Fair Potential (δ = 10−4) and
finite differences for R and TV (5). We measured quality of restored results using improvement in

signal to noise ratio, ISNR(β)
�
= 10 log10(‖y − x‖22/‖x− fβ(y)‖22).

In all experiments, we selected β so as to minimize Projected-SURE(β), Predicted-SURE(β) and
NGCV(β) using golden-mean search method. We assumed that σ was available (in practice, σ can
be reliably estimated) for computing Projected-SURE(β), Predicted-SURE(β). We implemented
W = (AAH)† in Projected-SURE using FFTs, where we set the eigenvalues of AAH below a
threshold of 10−3 to zero for numerical stability of (AAH)†. We also include results for β selected
by minimizing GCV(β) that applies only to linear algorithms, but has been suggested for use with
nonlinear algorithms as well (with Fβ replaced by fβ(y) in (6)) by Giryes et al.8 We compare our
results with those obtained by minimizing the true “unknown” (oracle) MSE(β).
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Figure 2: Experiment corresponding to third row in IR-B in Table 2: (a) Plot of Projected-MSE,
Projected-SURE(β), Predicted-MSE and Predicted-SURE(β), respectively, as functions of β. The esti-
mates closely capture the trends of the respective MSE-curves and their minima (indicated by *) are close
to that of the (oracle) MSE indicated by the solid vertical line. (b) Plot of ISNR(β) as a function of β along
with indication of ISNR values corresponding to MSE-, Predicted-SURE-, Projected-SURE-, NGCV-, and
GCV-selections. ISNR values obtained using Projected-SURE, Predicted-SURE, and NGCV are agreeably
close to the oracle (MSE) while GCV selection is noticeably worse.

In Table 2, we present ISNR of restoration results obtained by optimizing MSE(β), GCV(β),
NGCV(β), Predicted-SURE(β), and Projected-SURE(β) for various BSNRs in each experiment.
NGCV, Predicted-SURE, and Projected-SURE lead to ISNRs reasonably close to oracle-ISNR
corresponding to minimum-MSE in all experiments. In contrast, GCV (that is appropriate for linear
algorithms) yielded significantly lower ISNR values; this is likely because of the strong nonlinearity
of our algorithm for the considered nonquadratic regularizers.

We plot Projected-MSE(β), Predicted-MSE(β), Projected-SURE(β) and Predicted-SURE(β) in
Figure 2a and ISNR(β) in Figure 2b, respectively, as functions of β for an instance of Experiment
IR-B. Predicted-SURE is almost an exact replica of Predicted-MSE, while Projected-SURE follows
the trend of Projected-MSE very closely (Figure 2a), deviating only slightly for some β-values
away from the minimum. NGCV-, Predicted-SURE-, and Projected-SURE-based selections lead to
ISNRs close to that of the MSE-based selection (Figure 2b), while the GCV-based one produces a
much lower ISNR value.

Figure 3 shows a visual comparison of images restored with βs that minimized MSE(β), NGCV(β),
Projected-SURE(β), Predicted-SURE(β), and GCV(β) for the same instance of Experiment IR-B.
Figures 3d, 3e, and 3f corresponding to Projected-SURE, Predicted-SURE, and NGCV, respec-
tively, are visually similar to the minimum-MSE result Figure 3(c). GCV-based restoration Figure
3(g) is noticeably over-smoothed for reasons explained earlier. We obtained similar results in vari-
ous other experiments14 (results not shown due to space limitations) indicating the consistency of
our approach.

6. CONCLUSION

Selection of the regularization parameter β is an important step in regularized reconstruction meth-
ods. When data is corrupted by Gaussian noise, NGCV(β) (the nonlinear version of GCV)3,4 and
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3: Experiment corresponding to third row in IR-B in Table 2: Zoomed images of (a) Noise-free
Peppers; (b) Blurred and noisy data; and TV-restored images with regularization parameter β selected
to minimize (c) (oracle) MSE(β) (12.41 dB); (d) Projected-SURE(β) (12.41 dB); (e) Predicted-SURE(β)
(12.41 dB); (f) NGCV(β) (12.28 dB); (g) GCV(β) (-0.55 dB). Projected-SURE-, Predicted-SURE- and
NGCV-based results, (d)-(f), respectively, visually resemble the oracle MSE-based result (c) very closely,
while the GCV-based result is considerably over-smoothed.

weighted MSE-estimates,6 i.e., Predicted-SURE(β), Projected-SURE(β) can be used to tune β,
but their computation necessitates the evaluation6 of the trace of a linear transform of the Ja-
cobian matrix Jfβ . In this paper, we introduced a method to recursively evaluate Jfβ for the
IRLS-MIL algorithm that can handle a variety of regularizers including TV, �1-regularization and
smooth edge-preserving criteria. We estimated the desired trace using a Monte-Carlo scheme.17

We demonstrated through simulations that β selected by minimizing NGCV, Predicted-SURE
and Projected-SURE provide near-MSE-optimal results for restorations using TV, �1-wavelets and
smooth edge-preserving regularization with the Fair potential. Our results suggest that NGCV,
Predicted-SURE and Projected-SURE can be useful for regularization parameter selection in non-
linear restoration problems involving Gaussian noise. The proposed method can also be extended
to handle synthesis formulations, various other regularizers and restoration algorithms.
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