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Abstract—Statistical reconstruction methods for X-ray CT rely
on regularization to yield good quality images. We propose and
investigate a specific type of nonquadratic regularization for 3-D
CT reconstruction that corresponds to applying a 2-D orthonor-
mal wavelet transform (OWT) on trans-axial slices and finite
differences (FD) along the axial direction. We use an iterative
variable-splitting-basedalternating direction method of multipliers
(ADMM) reconstruction algorithm that effectively handles the
proposed regularizer. We also present a simple procedure to
incorporate iteration-dependent random shifting to circumvent
the shift-variance of OWT and to reduce block artifacts. The
proposed regularizer requires less memory compared to those
that use FDs and is thus advantageous for ADMM that stores
and manipulates auxiliary variables related to the regularizer. We
demonstrate using simulation with a 3-D XCAT phantom that the
proposed regularizer yields images that are visually comparable
in quality to those obtained using a regularizer composed of FDs.

Index Terms—X-ray CT imaging, statistical image reconstruc-
tion, nonquadratic regularization, alternating direction method
of multipliers, orthonormal wavelet transform.

I. INTRODUCTION
Regularized reconstruction methods for X-ray CT can pro-

vide good image quality at the expense of increased compu-
tation compared to unregularized noniterative methods such
as FBP. Nonquadratic regularizers that preserve edges [1] or
those that promote sparsity are particularly appealing for CT
reconstruction [2]. Such regularizers are usually composed of
shift-invariant operators such as f nite differences (FD) [1] or
frames [2]. Wavelet frames are especially attractive due to their
multiresolution nature and have been employed for CT [2], [3];
they may also be interpreted as multiresolution extensions of
f nite differences. However, for 3-D CT, frames can increase
computation (due to calculation of frame coeff cients during
reconstruction) compared to FDs and would require a signif -
cant memory overhead when used with some algorithms like
iterative shrinkage thresholding (IST) [4], [5] or alternating
direction method of multipliers (ADMM) [2].
An orthonormal wavelet transform (OWT) is a computation-

and memory-eff cient alternative to a wavelet frame. OWTs
retain the multiresolution aspect of wavelet frames and have
been successfully used in reconstruction problems in image
processing [4] and magnetic resonance imaging [5]. In this
work, we investigate the use of OWT for 3-D CT reconstruc-
tion. Specif cally, we propose a hybrid nonquadratic regular-
izer that is composed of 2-D OWTs (applied on the trans-axial
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slices) and FDs (applied along the axial direction). We used
the ADMM algorithm [2], for performing reconstruction as
it can easily handle the proposed regularizer. Based on our
previous work [6], we also present a simple strategy to inte-
grate iteration-dependent random shifting (IDRS) in ADMM
to compensate for the shift-variance of OWT and to reduce
block-artifacts therefrom. We illustrate using simulations with
a 3-D XCAT phantom [7] that the proposed approach is able
to provide reconstruction results that are qualitatively similar
to those obtained using a regularizer with FDs. Our method
can be easily extended for use with 3-D OWTs and can be
readily applied to axial and helical CT.

II. STATISTICAL X-RAY CT RECONSTRUCTION
A. Problem Formulation
We consider a penalized weighted least-squares formulation

of statistical 3-D X-ray CT reconstruction [1],

argmin
x

{

1

2
‖y −Ax‖2

W
+Ψ(Bx)

}

, (1)

where x ∈ R
N is a vector representing the 3-D volume (of

size N = N1×N2×N3) being reconstructed, y ∈ R
M is the

logarithm of raw transmission data,W ∈ R
M×M
+

is a diagonal
matrix consisting of statistical weights [1], [2], A ∈ R

M×N

is the system matrix so that Ax represents line integrals. We
consider a regularizer of the form

Ψ(Bx) = λ
∑

r

κrΦ(|[Bx]r|), (2)

where B represents the regularization operator, Φ is a potential
function, λ > 0 is the regularization parameter and κr > 0
are weights that govern the spatial resolution [8] in the
reconstructed result.

B. Regularization Operator
While common choices for B in 3-D CT are f nite differ-

ences (FD) along 3 orthogonal directions, or more comprehen-
sively, along 13 nearest-neighbor-directions [1], we explore
the use of an orthonormal wavelet transform (OWT) for
(1) in this work. OWTs posses several attractive properties
including regularity, sparsity / compressibility and their ability
to represent an image at multiple scales and have been widely
used in image-processing applications, e.g., restoration [4], and
magnetic resonance image reconstruction [5]. There are several
ways to incorporate OWTs for 3-D CT reconstruction, e.g., one
could consider (a) an entirely wavelet-based regularizer using
a 3-D OWT, or (b) some combination of OWTs and FDs for B
in (2). The advantage of (b) is that it allows for simultaneous
utilization of wavelet-properties and shift-invariance of FDs,
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so we specif cally choose to investigate the following hybrid-
form for B:

B =

[

V

C

]

, (3)

where V = IN3⊗W, C = R⊗IN1N2 , ⊗ represents Kronecker
product, and IM is the identity matrix of sizeM . The operator
B in (3) thus corresponds to applying a 2-D OWT, represented
by W ∈ R

N1N2×N1N2 , on each trans-axial slice and nearest-
neighbor-differences, represented by R ∈ R

N3×N3 , along
the axial direction (perpendicular to the trans-axial slices).
Moreover, as the axial direction is handled separately in B

(3), it allows for the use of varying regularization strength
along that direction to account for the cylindrical nature of
CT scanner geometries [1].

III. A SPLITTING-BASED ITERATIVE METHOD
IST-type algorithms [4], [5] are a common choice for

solving inverse problems like (1) with entirely wavelet-based
regularizers. However, the inclusion of FDs in B (3) precludes
the use of IST-type algorithms for (1). Gradient-descent algo-
rithms like nonlinear conjugate gradient (NCG) can be readily
applied for (1), but they are diff cult to precondition due to
the highly shift-variant nature of the Hessian, A⊤

WA, of the
data-f delity term in (1) [2] and thus may converge slowly.
Recently, we proposed an iterative variable-splitting-based

ADMM algorithm [2] for solving (1). ADMM employs aux-
iliary constraint variables to separate A from the data-f delity
term and B from the regularization term in (1) [2]. The
resulting effect of these variables is that ADMM involves
simple update steps [2] that correspond to inverting a diagonal
matrix, minimizing 1-D denoising cost functions that can be
achieved analytically and solving a linear system of equations
that is amenable to iterative solvers (e.g., preconditioned con-
jugate gradient) with effective preconditioning using circulant
matrices (e.g., associated with cone-type f lters [2]). These
features enable fast convergence of ADMM compared to
contemporary methods for CT [2] and also allow it to tackle
a variety of regularization criteria [2] including the proposed
one (2)-(3).

A. ADMM Algorithm
For solving (1) using ADMM, we employ constraints of the

form u = Ax and v = Bx, where for ease of analysis, we
decompose v = [v⊤

1
v
⊤
2
]⊤, so that v1 = Vx and v2 = Cx for

B in (3). Through a derivation similar to that in [2, Sec. III],
we obtain the following ADMM algorithm, where at iteration
j, we perform the following sequence of operations:

x
(j+1) = G

−1

ν

(

A
⊤(u(j) − ηηη(j)

u
)
+νV⊤(v

(j)
1
− ηηη

(j)
v1 )

+νC⊤(v
(j)
2
− ηηη

(j)
v2 )

)

, (4)

u
(j+1) = D

−1

µ (Wy + µ[Ax
(j+1) + ηηη(j)

u
]), (5)

v
(j+1)

1
= argmin

v1

{

Ψ(v1)+
µν

2

∥

∥

∥
v1−[Vx

(j+1) + ηηη(j)
v1

]
∥

∥

∥

2

2

}

,(6)

v
(j+1)

2
= argmin

v2

{

Ψ(v2)+
µν

2

∥

∥

∥
v2−[Cx

(j+1) + ηηη(j)
v2

]
∥

∥

∥

2

2

}

, (7)

ηηη(j+1)

u
= ηηη(j)

u
− (u(j+1) −Ax

(j+1)), (8)
ηηη(j+1)

v1
= ηηη(j)

v1
− (v

(j+1)

1
− Vx

(j+1)), (9)

ηηη(j+1)

v2
= ηηη(j)

v2
− (v

(j+1)

2
− Cx

(j+1)). (10)

The Lagrange-multiplier-like vectors ηηη
(·)
u , ηηη(·)v1 and ηηη

(·)
v2 are

associated with the constraint variables u, v1 and v2, respec-
tively. The penalty parameters µ > 0, ν > 0 govern only the
convergence speed of ADMM and were chosen as described
in [2, Sec. III.E], and

Gν
△

= A
⊤
A+ ν(V⊤

V+C
⊤
C) = A

⊤
A+ ν(IN+C

⊤
C), (11)

where we have used the orthonormality of W and V in (11):

W
⊤
W = WW

⊤ = IN1N2 =⇒ V
⊤
V = VV

⊤ = IN . (12)

Since A
⊤
A is “more” shift-invariant than A

⊤
WA [2] and

because C⊤C = R
⊤
R⊗ IN1N2 is shift-invariant (R is a f nite

differencing matrix), a CG-solver for (4) is amenable to FFT-
based preconditioning using suitable cone-type f lters [2]. The
updates corresponding to ηηη

(·)
u , ηηη(·)v1 , ηηη

(·)
v2 (8)-(10) are trivial.

The matrix Dµ
△

= W + µIM is diagonal and can be inverted
exactly in (5).
The minimizations in (6)-(7) each decouple in to 2N scalar

denoising problems in terms of the components {vi,r}Nr=1
of

vi, i = 1, 2, for the regularization Ψ in (2). Writing, ̺̺̺(j)
v1

△

=

Vx
(j+1) + ηηη

(j)
v1 , ̺̺̺

(j)
v2

△

= Cx(j+1) + ηηη
(j)
v2 , we have that

v
(j+1)

i,r = argmin
v

{

Ψ(v) +
µν

2
(v − ̺(j)

vi,r
)2
}

, (13)

̺
(j)
vi,r is the r-th component of ̺̺̺(j)vi

, i = 1, 2, r = 1, . . . , N .
The 1-D problem (13) admits analytical closed-form solution
for a variety of potential functions Φ [2]. For simplicity, we
focus on the Fair potential (smoothed-Laplacian)

Φ(x) = ΦFP(x)
△

= x/δ − log(1 + x/δ), (14)

δ > 0, that has been used successfully for CT [2], [6]. For
ΦFP, (13) leads to [2]

v
(j+1)

i,r = sign{̺(j)
vi,r
}
ζ
(j)
vi,r +

√

(ζ
(j)
vi,r)

2 + 4δ|̺
(j)
vi,r|

2
, (15)

where ζ
(j)
vi,r

△

= |̺
(j)
vi,r| − δ − λκr/(δµν), i = 1, 2.

B. Memory Requirement
Compared to other iterative methods like NCG or IST-type

algorithms, ADMM requires more memory as it needs to
store u(·), v(·) and associated Lagrange-multiplier-like vectors.
Depending on the regularization, memory requirement for v(·)

may overshoot that of u(·) and represent a signif cant memory-
overhead for 3-D CT; this is particularly the case with FDs
when all 13 nearest-neighbour directions are used [2]. As an
alternative, FDs in 3 orthogonal directions may be considered,
which will only require a total of 6 image-volumes for storing
v
(·) and its Lagrange-multiplier vector (signif cantly less than

26 image-volumes required for the 13-neighborhood case). In
comparison, ADMM for the proposed regularization operator
B (3) requires even less memory, a total of only 4 image-
volumes for storing v

(·) and its Lagrange-multiplier vector,
due to the use of the OWT W in B; the proposed B (3) is
thus advantageous for ADMM-based 3-D CT reconstruction.
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IV. ITERATION-DEPENDENT RANDOM SHIFTING
Memory eff ciency of an OWT comes at the expense of

its shift-variant nature that can lead to block-artifacts in
the reconstructed image [5], [6]. Iteration dependent random
shifting (IDRS) [4] is a cost-effective technique for partially
compensating the shift-variance of OWT and has been success-
fully used for image restoration [4] and MRI reconstruction
[5] with iterative shrinkage-thresholding (IST) type methods.
We proposed a simple strategy recently to incorporate IDRS in
ADMM for statistical 2-D CT reconstruction using regulariza-
tion composed entirely of OWT [6]. The basic idea there is to
apply an iteration-varying random translation to the estimate
x
(j) before solving a denoising problem akin to (6) and then

to undo the translation later in the sequence of updates in
ADMM. The same idea can be readily extended to the OWT-
part of the proposed B (3) and the update equation (6) for
corresponding constraint variable v1.
Before proceeding, it is useful to introduce ṽ1

△

= V
⊤
v1 and

ηηη
ṽ1

△

= V
⊤ηηηv1 . Then the updates that depend on V , (4), (6)

and (9), respectively, become

x
(j+1) = G

−1

ν

(

A
⊤(u(j) − ηηη(j)

u
)

+ν(ṽ
(j)
1
− ηηη

(j)

ṽ1
)

+νC⊤(v
(j)
2
− ηηη

(j)
v2 )

)

, (16)

ṽ
(j+1)

1
= V

⊤

(

argmin
v1

{

Ψ(v1)+

µν

2

∥

∥

∥
v1−V[x(j+1) + η̃ηη

(j)
v1

]
∥

∥

∥

2

2

})

,(17)

ηηη
(j+1)

ṽ1
= ηηη

(j)

ṽ1
− (ṽ

(j+1)

1
− x

(j+1)), (18)

where we have used the orthonormality of V in (17) and (18).
Thus the only step in ADMM where V (i.e., OWT) appears
now is (17), so we need only focus on (17) for incorporating
IDRS. Since we want to promote shift-invariance, at each
iteration j, we consider S

(j) △

= diag{S
(j)

1
· · ·S

(j)

N3
}, where

{S
(j)

i }
N3

i=1
areN1N2×N1N2 block permutation matrices, such

that the action of S(j) on x
(j) randomly translates each trans-

axial slice by different amounts. Then applying IDRS simply
amounts to using ˜V

(j) △

= VS
(j) in (17), i.e., ṽ(j+1)

1
=

˜V
(j)⊤



argmin
v1







Ψ(v1)+

µν

2

∥

∥

∥

∥

v− ˜V
(j)

[x(j+1) + η̃ηη
(j)
v1

]

∥

∥

∥

∥

2

2









, (19)

that is, IDRS is f rst applied to the input (x(j+1) + η̃ηη
(j)
v1

)

to the denoising step (19) via ˜V
(j)
, the denoising operation

[minimization in (19)] is performed similar to (13)-(15), and
IDRS is undone later in the same step via ˜V

(j)⊤
. This is

similar to how IDRS is also applied in IST-type algorithms [4],
[5]. We summarize below our ADMM-IDRS scheme for 3-D
CT reconstruction assuming we have a sequence of random
translations represented by {S(j)}.

ADMM-IDRS for 3-D CT Reconstruction
1. Initialization: x(1); Set ηηη(0)u = ηηη

(0)

ṽ1
= ηηη

(0)

v2 = ηηη
(1)

u =

ηηη
(1)

ṽ1
= ηηη

(1)

v2 = 0; Compute u
(1) using (5); obtain ṽ

(1)

1
,

v
(1)

2
, respectively, using (19), (7), (13)-(15); set j = 1.

2. Apply (P)CG for partially solving (16) to obtain x
(j+1).

3. Compute u
(j+1) using (5).

4. Obtain ṽ
(j+1)

1
, v(j+1)

2
using (19), (7) and (13)-(15).

5. Update ηηη(j+1)

u , ηηη(j+1)

ṽ1
, ηηη(j+1)

v2 using (8), (18), (10).
6. Set j←j+1; Repeat Steps 2-6 till stop criterion is met.

IDRS as applied to ADMM above for 3-D CT reconstruction
is computationally eff cient since it only requires trivial trans-
lation operations and provides image quality comparable to
that obtained using FDs as demonstrated next.

V. EXPERIMENTAL SETUP & RESULTS

We performed simulations with a 3-D XCAT phantom [7]
of size 1024 × 1024 × 188. We generated a 888 × 984 × 64
noisy sinogram with GE LightSpeed fan-beam geometry [2]
(axial scan) corresponding to a monoenergetic source with
5 × 105 incident photons per ray and no background events.
We reconstructed 512×512×92 image-volumes (that include
a padding of 28 trans-axial slices to account for the “long
object problem” of the scanner geometry) whose trans-axial
FOV was 50 cm and whose axial FOV of the region of
interest was 4 cm. We used the separable-footprints (SF-
TR) projector [9] (implemented in C) for computing matrix-
vector products such as Ax, A

⊤
u and initialized ADMM

[2] and the proposed ADMM-IDRS with the image-volume
reconstructed using FDK with Hanning f lter. We applied 5
CG iterations with a cone-f lter-type preconditioner [2] for
“solving” (16). We compared reconstruction quality yielded
by the regularizer in (2) with ΦFP [δ = 10 HU (14)] using (a)
f nite differences (FD) in 3 orthogonal directions and (b) the
proposed operatorB (3) employing 3 levels of the orthonormal
Haar wavelet transform forW . Computation times of ADMM
[2] for case (a) and the proposed ADMM-IDRS for case (b)
were dominated by products with A and A

⊤ and were similar
(≈ 3 minutes / iteration in Matlab running on a 12-core PC
with 2.80 GHz Intel Xeon CPUs and 24 GB RAM).
We set κr =

√

[A⊤
W1]r/[A⊤

1]r [8] wherever FDs were
involved (including those in B). For the OWT part in B, we
f rst applied IDRS, i.e., S(·), to κκκ = {κr} and propagated
the resulting vector through the wavelet decomposition tree
without employing the wavelet-f ltering steps to obtain a set
of subband-dependent weights that replaced κr in (15) for
(i = 1) the OWT part of B. We also set the weights
corresponding to the approximation coeff cients to zero (i.e.,
they were not thresholded since they are not sparse in general
[4]–[6]). We chose the regularization parameter λ so as to
roughly compromise between smoothing and reduction of
noise and artifacts. Figs. 1-3 present reconstruction results for
our simulation. Both regularized reconstruction results (third
and fourth columns in all f gures) provide improved quality
over the FDK result along the trans-axial, coronal and sagittal
views. Moreover, the proposed method [ADMM-IDRS with
B (3)] yields reconstructed images (fourth column in Figs. 1-
3) that are visually comparable to those obtained using f nite
differences in 3 orthogonal directions (third column in Figs. 1-
3) indicating the potential of orthonormal wavelets and IDRS
for 3-D CT reconstruction.

VI. CONCLUSION & DISCUSSION

We proposed a hybrid nonquadratic regularizer (2) for statis-
tical 3-D CT reconstruction with an operator B (3) that applies
a 2-D orthonormal wavelet transform (OWT) on trans-axial
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Fig. 1. Simulation with a 3-D XCAT phantom. Zoomed slices in trans-axial view (444 × 242). First row: Slice 26, Second row: Slice 46 and Third
row: Slice 66. First column: Noisefree phantom; Second column:FDK result with Hanning f lter; Third column: ADMM result for ΦFP (14) with f nite
differences in 3 orthogonal directions; Fourth column: ADMM-IDRS result for ΦFP (14) with proposed operator B (3) involving OWT. Images are displayed
in Hounsf eld units in the range of [800, 1200].

Fig. 2. Simulation with a 3-D XCAT phantom. Zoomed slices in coronal view (444 × 50). First row: Slice 197, Second row: Slice 257 and Third
row: Slice 317. First column: Noisefree phantom; Second column:FDK result with Hanning f lter; Third column: ADMM result for ΦFP (14) with f nite
differences in 3 orthogonal directions; Fourth column: ADMM-IDRS result for ΦFP (14) with proposed operator B (3) involving OWT. Images are displayed
in Hounsf eld units in the range of [800, 1200].

Fig. 3. Simulation with a 3-D XCAT phantom. Zoomed slices in sagittal view (242 × 50). First row: Slice 197, Second row: Slice 257 and Third
row: Slice 317. First column: Noisefree phantom; Second column:FDK result with Hanning f lter; Third column: ADMM result for ΦFP (14) with f nite
differences in 3 orthogonal directions; Fourth column: ADMM-IDRS result for ΦFP (14) with proposed operator B (3) involving OWT. Images are displayed
in Hounsf eld units in the range of [800, 1200].

slices and f nite differences (FD) along the axial direction. We
developed a simple scheme to incorporate iteration-dependent
random shifting (IDRS) [4]–[6] in the ADMM reconstruction
algorithm [2] to compensate for the shift-variance of the
OWT part of the proposed operator B (3). Simulations with
a 3-D XCAT phantom indicate that the proposed method,
i.e., ADMM-IDRS with the hybrid regularizer (2)-(3), yields
reconstructed images that are qualitatively similar to those
obtained using a regularizer composed of FDs in 3 orthogonal
directions. We are currently evaluating improved choices for
subband-dependent weights for the OWT part of the proposed
regularizer (2)-(3). The next step is to compare the proposed
regularizer (2)-(3) against one that uses FDs in all 13 nearest-
neighbour directions [1] in 3-D. We also plan to investigate
regularization criteria that use 3-D OWT for 3-D CT recon-
struction with application to helical CT.
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