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ABSTRACT
Although statistical image reconstruction methods for X-ray CT can provide improved image quality at reduced patient

doses, computation times for 3D axial and helical CT are a challenge. Rapidly converging algorithms are needed for

practical use. Augmented Lagrangian methods based on variable splitting recently have been found to be effective for

image denoising and deblurring applications.5 These methods are particularly effective for non-smooth regularizers such

as total variation or those involving the �1 norm. However, when standard “split Bregman” methods6 are applied directly

to 3D X-ray CT problems, numerous auxiliary variables are needed, leading to undesirably high memory requirements.7

For minimizing regularized, weighted least-squares (WLS) cost functions, we propose a new splitting approach for CT,

based on the alternating direction method of multipliers (ADMM)1,5 that has multiple benefits over previous methods: (i)

reduced memory requirements, (ii) effective preconditioning using modified ramp/cone filters, (iii) accommodating very

general regularizers including edge-preserving roughness penalties, total variation methods, and sparsifying transforms

like wavelets. Numerical results show that the proposed algorithm converges rapidly, and that the cone filter is particularly

effective for accelerating convergence.

1. INTRODUCTION
Consider a statistical 3D CT image reconstruction algorithm that estimates the unknown volume x ∈ R

N as x̂, the

minimizer of a cost function, f(x):

x̂ = argmin
x

f(x)

f(x) =
1

2
||y −Ax||2W + R (Cx) .

(1)

The statistical weights W are generated from the noise-corrupted projections y ∈ R
M and have significant dynamic range.

The 3D CT forward projection operator is A ∈ R
M×N , and R (Cx) is an edge-preserving regularizer of the form

R (Cx) = β

Nr∑

r=1

κrφ ([Cx]r) . (2)

The linear transform C ∈ R
Nr×N may be a finite-differencing matrix, wavelet transform, or some other combination of

sparsifying linear transforms. Often, Nr is larger than N : for a difference-of-neighbors C in 3D CT, Nr = 13N .10 The pa-

rameters β and {κr}r control the strength of the regularization and encourage uniform spatial resolution, respectively. The

penalty function φ is even, nonnegative and convex but not necessarily differentiable. Possible choices include φ(x) = |x|
for �1-style regularizers such as anisotropic total-variation or the differentiable Fair potential φFP (x) =

∣∣x
δ

∣∣−log
(
1 +

∣∣x
δ

∣∣),

where δ > 0.

Conjugate gradient-based approaches to solving (1) will obviously have difficulty with non-differentiable regularizers,

but even with smooth regularizers, problems arise. The Hessian of f is

ATWA+∇2R (Cx) .
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With highly space-varying W, the ATWA term becomes difficult to efficiently precondition,4 leading to slow conver-

gence. Storage of Cx should also be avoided if possible, as it may incur unacceptably large memory requirements. For

example, for a 5123 image volume Cx is almost 7 gigabytes using 32-bit floating point values.

A convergent iterative algorithm for solving (1) in the 2D setting was proposed earlier7 using the alternating directions

method of multipliers.3 The algorithm performs well, but relies on storing several vectors in R
Nr , requiring significant

amounts of memory especially in the 3D setting. We present here a modification of this algorithm requiring less memory

and intended for use in 3D CT.

2. METHODS
We use a variable splitting scheme to separate the terms of the cost function f . Define the auxiliary variables u ∈ R

M ,

v ∈ R
N and consider the following constrained minimization, equivalent to (1):

x̂ = argmin
x

1

2
||y − u||2W + R (Cv)

subject to u = Ax

v = x.

(3)

This splitting differs from the splitting presented earlier9 by defining v = x instead of v = Cx.

With a convex regularizer, (3) can be solved using the alternating directions method of multipliers,3 which involves

numerically tractable sequential minimizations with respect to each of x, u and v individually.

Define the augmented Lagrangian function L for (3):

L (x,u,v;γu,γv) =
1

2
||y − u||2W + R (Cv) + γT

u (u−Ax) +
μu

2
||u−Ax||2 + γT

v (v − x) +
μv

2
||v − x||2 . (4)

The positive real parameters μu, μv can affect the rate of convergence but not the final solution.3 Define ηu = − 1
μu

γu,

ηv = − 1
μv

γv . The Lagrangian function can be rewritten by absorbing the γu and γv terms into penalty terms and

discarding irrelevant constants:8

L (x,u,v;ηu,ηv) =
1

2
||y − u||2W + R (Cv) +

μu

2
||u− (Ax+ ηu)||2 + μv

2
||v − (x+ ηv)||2 . (5)

The standard method of multipliers augmented Lagrangian technique prescribes the following updates to achieve a

solution of the original constrained minimization problem:

x(j+1),u(j+1),v(j+1) ← argmin
x,u,v

L
(
x,u,v;η(j)

u ,η(j)
v

)
(6)

η(j+1)
u ← η(j)

u +
(
Ax(j+1) − u(j+1)

)
; η(j+1)

v ← η(j)
v +

(
x(j+1) − v(j+1)

)
. (7)

The joint minimization with respect to x, u and v remains numerically difficult. Fortunately, the alternating directions

method of multipliers allows (6) to be decoupled into three sequential updates:

x(j+1) ← argmin
x

L
(
x,u(j),v(j);η(j)

u ,η(j)
v

)
(8)

u(j+1) ← argmin
u

L
(
x(j+1),u,v(j);η(j)

u ,η(j)
v

)
(9)

v(j+1) ← argmin
v

L
(
x(j+1),u(j+1),v;η(j)

u ,η(j)
v

)
, (10)

which are numerically easier to perform.
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• Initialize variables: ηv ← 0, ηu ← 0, x ← xfdk, u ← Ax, v ← x.

• Iterate n times:

– Update x by approximating (11) using preconditioned conjugate gradients with one of the preconditioners

from Table 1.

– Update u with (12).

– Approximately solve (13) to update v with some iterative procedure.

– Update the Lagrange variables ηu, ηv using (7).

Figure 1. Summary of the proposed algorithm.

Another remarkable feature of the alternating directions method of multipliers framework is that the updates (8)-(10)

do not need to be performed exactly to guarantee convergence:

Let x
(j)
∗ , u

(j)
∗ , and v

(j)
∗ be the exact solutions to updates (8)-(10). Define ε

(j)
x =

∣∣∣
∣∣∣x(j)

∗ − x(j)
∣∣∣
∣∣∣, ε(j)u =

∣∣∣
∣∣∣u(j)

∗ − u(j)
∣∣∣
∣∣∣,

ε
(j)
v =

∣∣∣
∣∣∣v(j)

∗ − v(j)
∣∣∣
∣∣∣. If the series

∞∑

j=1

ε(j)x ;
∞∑

j=1

ε(j)u ;
∞∑

j=1

ε(j)v

all converge, then
{
x(j)

}
j
,
{
u(j)

}
j

and
{
v(j)

}
j

will all converge3 to a solution of the original constrained optimization

problem (3).

The Lagrangian function L is quadratic in x and u, so updates (8) and (9) can be written in closed form:

x(j+1) ← (
μuA

TA+ μvI
)−1

(
μuA

T
(
u(j) − η(j)

u

)
+ μv

(
v(j) − η(j)

v

))
, (11)

u(j+1) ← (W + μuI)
−1

(
Wy + μu

(
Ax(j+1) + η(j)

u

))
(12)

In the u update (12), the matrix (W + μuI) is diagonal. If Ax(j+1) is precomputed after the x update and stored for the

ηu update (7), then an exact u update involves only vector addition and element-wise scaling.

The matrix
(
μuA

TA+ μvI
)

is too large in any practical 3D CT problem to invert directly: an iterative algorithm like

preconditioned gradient descent (PCG) may be used instead. If the PCG-driven update achieves a residual that decreases

faster than 1/j at the jth iteration, convergence is guaranteed.3 This will potentially require more inner iterations of

PCG for each outer iteration j. Warm-starting PCG with the previous value of x may help decrease the number of inner

iterations. Regardless, each inner iteration of PCG will require the application of the time-consuming forward and back-

projection operations, A and AT. Consequently, preconditioners that allow less iterations of PCG to be run are of great

interest.

In the 2D setting ATA is “somewhat” shift invariant,2 so (11) can be effectively preconditioned using shift invariant

cone-type filters. Such preconditioners require only one 2D FFT/inverse-FFT pair per application, and were shown to be

effective in accelerating PCG applied to inverting
(
μuA

TA+ μvI
)

in 2D CT.9

The “nearly” shift invariant assumption can be extended to the 3D setting in a number of ways, with variations arising

in how the assumption of shift-invariance is treated in the axial dimension. If ATA is assumed to be nearly shift-invariant

throughout the entire volume, a single 3D filter may be used. The preconditioner filt3d in Table 1 is built with this

assumption. However, this is a rather strong assumption particularly in axial CT, because slices towards the edge of the

imaged volume have significantly different footprints on the X-ray detector. Another additional preconditioner is suggested

in Table 1 that does not assume ATA shift-invariant in the axial dimension. The slice-filt2d preconditioner assumes

shift invariance within each slice but does not attempt to invert any axial behavior of ATA. A benefit of slice-filt2d
is a slight decrease in computational complexity relative to the filt3d preconditioner.
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Table 1. Two linear shift invariant (LSI) preconditioners approximating
(
µuA

TA+ µvI
)−1

.

Description Storage Complexity
filt3d 3D LSI filter NxNyNz O (NxNyNz log (NxNyNz))
slice-filt2d 2D LSI filter for each slice NxNyNz O (NxNyNz log (NxNy))

The v update requires the minimization of a function that is convex but not typically not quadratic. It is a regularized

denoising problem of the following form:

v(j+1) ← argmin
v

μv

2

∣∣∣
∣∣∣v −

(
x(j+1) + η(j)

v

)∣∣∣
∣∣∣
2

+ R (Cv) . (13)

This is a penalized least squares denoising operation, for which many algorithms exist. The denoising step does not need

to be exact, so long as approximation error decreases faster than 1/j for the jth iteration. Some care must be taken to

select denoising algorithms which do not rely on splitting the v and Cv terms, as this splitting incurs the memory cost the

proposed algorithm is designed to avoid without a clear benefit.

The inexactness of the v update and the amount of time required to run an iterative algorithm to approximately solve

(12) are the primary costs of this algorithm’s lower memory requirement relative to the “v = Cx” splitting.

The parameters μu and μv do not effect the final solution of the algorithm. Selecting μu = median {wi} makes u

update (12) well conditioned. In a similar vein, μv =
λmax(ATA)

μu
would better condition the x update (11), but we found

μv = 1
1000

λmax(ATA)
μu

leads to swifter convergence.

The proposed algorithm is summarized in Figure 1. Table 2 summarizes the differences in memory requirements

between the proposed algorithm and the “v = Cx”-splitting ADMM algorithm.

3. EXPERIMENTS
We performed several reconstructions of a simulated 256 × 256 × 96-pixel phantom downsampled 4 times. The projec-

tion data was numerically generated from a simulation of an axial scan with GE Lightspeed fan-beam geometry11 and a

monoenergic source at 105 photon counts per ray. The Fair potential penalty function φFP was used with hyperparameter

δ = .01, and we set the regularization strength parameter β = 25. A finite-differencing matrix using all 26 neighbors of

each interior voxel (i.e., Nr = 13N ), was selected for C. The Fair potential is strictly convex, so (1) has a unique solution,

x∗. A nonlinear conjugate gradient solver was run for 500 iterations to generate an estimate of the final converged solution,

x∗; and the Feldkamp filtered backprojection algorithm was used to generate xfdk.

The v update step in the proposed algorithm was implemented with unpreconditioned nonlinear conjugate gradients,

and the x update step was performed with at most 15 steps of PCG with warm starting. The proposed algorithm and the

high-memory ADMM algorithm were run for 60 iterations with each of the preconditioners from Table 1. The root mean

square error between each intermediate reconstruction at every iteration and the converged solution x∗ was computed and

plotted against both time and iteration number; see Figure 2.

The high-memory ADMM algorithm converged more quickly than the proposed low-memory algorithm in general

and for each preconditioner selection. The 3D preconditioner filt3d decreased both algorithm’s convergence rate, even

ignoring the computational cost of applying the preconditioner. However, the slice-filt2d preconditioner increased

the convergence rate of both the low-memory and high-memory ADMM algorithms.

Table 2. Comparison of memory requirements of “low-memory” and “high-memory” ADMM algorithms

Number of values stored
W y x u v ηu ηv Example

high-memory M M N M Nr M Nr ≈ 2.7 GIB

proposed M M N M N M N ≈ 1.1 GIB
The “example” is a N = 512× 512× 64 volume imaged with the GE Lightspeed with a single turn, i.e., M = 888× 64× 984. All 26

voxel neighbors are used for regularization, Nr = 13N discounting edge voxels. All floating point values are assumed to be stored in

32-bit single-precision. Results are given in gibibytes, 1 GIB = 230 bytes.
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Figure 2. RMSE series of high-memory and proposed low-memory ADMM algorithms for two preconditioners plotted against (a)

iteration and (b) time.

The low-memory ADMM algorithm performed as well as if not slightly better than the high-memory ADMM algorithm

on a per-iteration basis. This suggests that, while our current implementation is significantly slower than the high-memory

version, speeding up the parallelizable v update step may yield an algorithm with both modest memory requirements and

rapid convergence.

4. CONCLUSIONS
We have developed a flexible new X-ray CT reconstruction algorithm with moderate memory requirements. The most

performance-critical aspects of the new algorithm are a penalized weighted least squares denoising operation and a matrix

inversion. Both operations can be performed approximately without sacrificing convergence, and the matrix inversion may

be effectively preconditioned using a series of 2D linear shift invariant filters. The next steps will be to accelerate the

v update step, compare the proposed algorithm to other axial CT image reconstruction algorithms in the literature, and

explore extensions to helical CT.
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